The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Partition sensitivity for measurable maps”

An Alpern tower independent of a given partition

James T. Campbell, Jared T. Collins, Steven Kalikow, Raena King, Randall McCutcheon (2015)

Colloquium Mathematicae

Similarity:

Given a measure-preserving transformation T of a probability space (X,ℬ,μ) and a finite measurable partition ℙ of X, we show how to construct an Alpern tower of any height whose base is independent of the partition ℙ. That is, given N ∈ ℕ, there exists a Rokhlin tower of height N, with base B and error set E, such that B is independent of ℙ, and TE ⊂ B.

Product Pre-Measure

Noboru Endou (2016)

Formalized Mathematics

Similarity:

In this article we formalize in Mizar [5] product pre-measure on product sets of measurable sets. Although there are some approaches to construct product measure [22], [6], [9], [21], [25], we start it from σ-measure because existence of σ-measure on any semialgebras has been proved in [15]. In this approach, we use some theorems for integrals.

On the extension of measures.

Baltasar Rodríguez-Salinas (2001)

RACSAM

Similarity:

We give necessary and sufficient conditions for a totally ordered by extension family (Ω, Σ, μ) of spaces of probability to have a measure μ which is an extension of all the measures μ. As an application we study when a probability measure on Ω has an extension defined on all the subsets of Ω.

The uniqueness of Haar measure and set theory

Piotr Zakrzewski (1997)

Colloquium Mathematicae

Similarity:

Let G be a group of homeomorphisms of a nondiscrete, locally compact, σ-compact topological space X and suppose that a Haar measure on X exists: a regular Borel measure μ, positive on nonempty open sets, finite on compact sets and invariant under the homeomorphisms from G. Under some mild assumptions on G and X we prove that the measure completion of μ is the unique, up to a constant factor, nonzero, σ-finite, G-invariant measure defined on its domain iff μ is ergodic and the G-orbits...