𝒫 -approximable compact spaces

Mihail G. Tkachenko

Commentationes Mathematicae Universitatis Carolinae (1991)

  • Volume: 32, Issue: 3, page 583-595
  • ISSN: 0010-2628

Abstract

top
For every topological property 𝒫 , we define the class of 𝒫 -approximable spaces which consists of spaces X having a countable closed cover γ such that the “section” X ( x , γ ) = { F γ : x F } has the property 𝒫 for each x X . It is shown that every 𝒫 -approximable compact space has 𝒫 , if 𝒫 is one of the following properties: countable tightness, 0 -scatteredness with respect to character, C -closedness, sequentiality (the last holds under MA or 2 0 < 2 1 ). Metrizable-approximable spaces are studied: every compact space in this class has a dense, Čech-complete, paracompact subspace; moreover, if X is linearly ordered, then X contains a dense metrizable subspace.

How to cite

top

Tkachenko, Mihail G.. "$\mathcal {P}$-approximable compact spaces." Commentationes Mathematicae Universitatis Carolinae 32.3 (1991): 583-595. <http://eudml.org/doc/247317>.

@article{Tkachenko1991,
abstract = {For every topological property $\mathcal \{P\}$, we define the class of $\mathcal \{P\}$-approximable spaces which consists of spaces X having a countable closed cover $\gamma $ such that the “section” $X(x,\gamma )= \bigcap \lbrace F\in \gamma :x\in F\rbrace $ has the property $\mathcal \{P\}$ for each $x\in X$. It is shown that every $\mathcal \{P\}$-approximable compact space has $\mathcal \{P\}$, if $\mathcal \{P\}$ is one of the following properties: countable tightness, $\aleph _0$-scatteredness with respect to character, $C$-closedness, sequentiality (the last holds under MA or $2^\{\aleph _0\}<2^\{\aleph _1\}$). Metrizable-approximable spaces are studied: every compact space in this class has a dense, Čech-complete, paracompact subspace; moreover, if $X$ is linearly ordered, then $X$ contains a dense metrizable subspace.},
author = {Tkachenko, Mihail G.},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {$\mathcal \{P\}$-approximable space; Lindelöf $\Sigma $-space; compact; metrizable; $C$-closed; sequential; linearly ordered; Lindelöf -space; metrizable-approximable spaces; - approximable spaces; countable tightness; -scatteredness; compact space; dense, Čech-complete paracompact subspace},
language = {eng},
number = {3},
pages = {583-595},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {$\mathcal \{P\}$-approximable compact spaces},
url = {http://eudml.org/doc/247317},
volume = {32},
year = {1991},
}

TY - JOUR
AU - Tkachenko, Mihail G.
TI - $\mathcal {P}$-approximable compact spaces
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1991
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 32
IS - 3
SP - 583
EP - 595
AB - For every topological property $\mathcal {P}$, we define the class of $\mathcal {P}$-approximable spaces which consists of spaces X having a countable closed cover $\gamma $ such that the “section” $X(x,\gamma )= \bigcap \lbrace F\in \gamma :x\in F\rbrace $ has the property $\mathcal {P}$ for each $x\in X$. It is shown that every $\mathcal {P}$-approximable compact space has $\mathcal {P}$, if $\mathcal {P}$ is one of the following properties: countable tightness, $\aleph _0$-scatteredness with respect to character, $C$-closedness, sequentiality (the last holds under MA or $2^{\aleph _0}<2^{\aleph _1}$). Metrizable-approximable spaces are studied: every compact space in this class has a dense, Čech-complete, paracompact subspace; moreover, if $X$ is linearly ordered, then $X$ contains a dense metrizable subspace.
LA - eng
KW - $\mathcal {P}$-approximable space; Lindelöf $\Sigma $-space; compact; metrizable; $C$-closed; sequential; linearly ordered; Lindelöf -space; metrizable-approximable spaces; - approximable spaces; countable tightness; -scatteredness; compact space; dense, Čech-complete paracompact subspace
UR - http://eudml.org/doc/247317
ER -

References

top
  1. Alexandroff P.S., Urysohn P.S., Memoir on compact topological spaces (in Russian), Moscow, Nauka, 1971. MR0370492
  2. Arhangel'skii A.V., Bicompact sets and the topology of spaces, Trans. Mosc. Math. Soc. 13 (1965), 1-62. (1965) MR0195046
  3. Arhangel'skii A.V., On one class of spaces that contains all metrizable and all locally compact spaces (in Russian), Matem. Sb. 67 (1965), 55-88. (1965) MR0190889
  4. Arhangel'skii A.V., On bicompacta hereditarily satisfying the Souslin condition. Tightness and free sequences, Soviet. Math. Dokl. 12 (1971), 1253-1257. (1971) 
  5. Arhangel'skii A.V., On compact spaces which are unions of certain collections of subspaces of special type, Comment. Math. Univ. Carolinae 17 (1976), 737-753. (1976) MR0445453
  6. Arhangel'skii A.V., On topologies weakly connected with orderings (in Russian), Dokl AN SSSR 238 (1978), 773-776. (1978) MR0515022
  7. Arhangel'skii A.V., On spaces of continuous functions with the pointwise convergence topology (in Russian), Dokl. AN SSSR 240 (1978), 505-508. (1978) MR0500817
  8. Arhangel'skii A.V., Structure and classification of topological spaces and cardinal invariants (in Russian), Uspechi Mat. Nauk 33 (1978), 29-84. (1978) MR0526012
  9. Arhangel'skii A.V., On invariants of type character and weight (in Russian), Trudy Mosc. Mat. Obsch. 38 (1979), 3-27. (1979) MR0544935
  10. Balcar B., Pelant J., Simon P., The space of ultrafilters on covered by nowhere dense sets, Fund. Math. 110 (1980), 11-24. (1980) MR0600576
  11. Engelking R., General Topology, Warszawa, PWN, 1977. Zbl0684.54001MR0500780
  12. Franklin S.P., Spaces in which sequences suffice, II, Fund. Math. 57 (1967), 51-56. (1967) Zbl0168.43502MR0222832
  13. Gul'ko S.P., On the structure of spaces of continuous functions and their hereditary paracompactness (in Russian), Uspechi Mat. Nauk 34 (1979), 33-40. (1979) MR0562814
  14. Ismail M., Products of C -closed spaces, Houston J. Math. 10 (1984), 195-199. (1984) MR0744903
  15. Ismail M., Nyikos P., On spaces in which countably compact sets are closed, and hereditary properties, Topology Appl. 11 (1980), 281-292. (1980) Zbl0434.54018MR0585273
  16. Juhász I., Cardinal functions in topology, Math. Centre Tracts, 34, Amsterdam, 1971. MR0340021
  17. Leiderman A.G., On dense metrizable subspaces of Corson compact spaces (in Russian), Matem. Zametki 38 (1985), 440-449. (1985) MR0811578
  18. Malyhin V.I., On the tightness and the Souslin number of e x p X and of a product of spaces, Soviet Math. Dokl. 13 (1972), 496-499. (1972) 
  19. Malyhin V.I., Šapirovskii B.E., Martin's axiom and properties of topological spaces (in Russian), Dokl. AN SSSR 213 (1973), 532-535. (1973) MR0343241
  20. Nagami K., Σ -spaces, Fund. Math. 65 (1969), 169-192. (1969) Zbl0181.50701MR0257963
  21. Noble N., Products with closed projections, II, Trans. Amer. Math. Soc. 160 (1971), 169-183. (1971) Zbl0233.54004MR0283749
  22. Šapirovskii B.E., On mappings onto Tychonoff cubes (in Russian), Uspechi Mat. Nauk 35 (1980), 122-130. (1980) MR0580628
  23. Simon P., Covering of a space by nowhere dense sets, Comment. Math. Univ. Carolinae 18 (1977), 755-761. (1977) Zbl0373.54009MR0464133
  24. Sokolov G.A., On some classes of compact spaces lying in Σ -products, Comment. Math. Univ. Carolinae 25 (1984), 219-231. (1984) Zbl0577.54014MR0768809
  25. Štěpánek P., Vopěnka P., Decomposition of metric spaces into nowhere dense sets, Comment. Math. Univ. Carolinae 8 (1967), 387-404, 567-568. (1967) MR0225657
  26. Talagrand M., Sur les espaces Banach faiblement K -analytiques, Comp. Rend. Acad. Sci., Ser. A 285 (1977), 119-122. (1977) MR0440342
  27. Tkačenko M.G., Some addition theorems in the class of compact spaces (in Russian), Sibir. Mat. J. 24 (1983), 135-143. (1983) MR0731050
  28. Tkačenko M.G., On compactness of countably compact spaces having additional structure, Trans. Mosc. Math. Soc. 1984, Issue 2, 149-167. 
  29. Tkačenko M.G., The notion of o-tightness and C -embedded subspaces of products, Topology Appl. 15 (1983), 93-98. (1983) MR0676970
  30. Todorčević S., Cardinal functions on linearly ordered topological spaces, - Topology and order structures, Part I (Lubbock, Tex., 1980), p. 177-179, Math. Centre Tracts, 142, Math. Centrum, Amsterdam, 1981 (). MR0630552
  31. Todorčević S., Stationary sets and continuums, Publ. Inst. Math., Nouvelle sér. 27 (1981), 249-262. (1981) MR0657114
  32. White H.E., First-countable spaces that have special pseudobases, Canad. Math. Bull. 21 (1978), 103-112. (1978) MR0482615

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.