The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Modified Wiener indices of thorn trees”

Helly Property for Subtrees

Jessica Enright, Piotr Rudnicki (2008)

Formalized Mathematics

Similarity:

We prove, following [5, p. 92], that any family of subtrees of a finite tree satisfies the Helly property.MML identifier: HELLY, version: 7.8.09 4.97.1001

The maximum multiplicity and the two largest multiplicities of eigenvalues in a Hermitian matrix whose graph is a tree

Rosário Fernandes (2015)

Special Matrices

Similarity:

The maximum multiplicity of an eigenvalue in a matrix whose graph is a tree, M1, was understood fully (froma combinatorial perspective) by C.R. Johnson, A. Leal-Duarte (Linear Algebra and Multilinear Algebra 46 (1999) 139-144). Among the possible multiplicity lists for the eigenvalues of Hermitian matrices whose graph is a tree, we focus upon M2, the maximum value of the sum of the two largest multiplicities when the largest multiplicity is M1. Upper and lower bounds are given for M2....