Diagonal Temperley-Lieb invariants and harmonics.
Aval, J.-C., Bergeron, F., Bergeron, N. (2005)
Séminaire Lotharingien de Combinatoire [electronic only]
Similarity:
Aval, J.-C., Bergeron, F., Bergeron, N. (2005)
Séminaire Lotharingien de Combinatoire [electronic only]
Similarity:
Ebrahimi-Fard, Kurusch (2004)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Caenepeel, S., Dăscălescu, S., Militaru, G., Panaite, F. (1997)
Bulletin of the Belgian Mathematical Society - Simon Stevin
Similarity:
Szczesny, Matt (2010)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Nicolás Andruskiewitsch, Hans-Jürgen Schneider (2002)
Annales scientifiques de l'École Normale Supérieure
Similarity:
Ogievetsky, O.
Similarity:
José N. Alonso Alvarez, José Manuel Fernández Vilaboa, Ramón González Rodríguez (2001)
Publicacions Matemàtiques
Similarity:
Let τ be an invertible skew pairing on (B,H) where B and H are Hopf algebras in a symmetric monoidal category C with (co)equalizers. Assume that H is quasitriangular. Then we obtain a new algebra structure such that B is a Hopf algebra in the braided category γD and there exists a Hopf algebra isomorphism w: B ∞ H → B [×] H in C, where B ∞ H is a Hopf algebra with (co)algebra structure the smash (co)product and B [×] H is the Hopf algebra defined by Doi and Takeuchi. ...