The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Octahedral Noncompact Hyperbolic Space Forms With Finite Volume”

Some generalized Coxeter groups and their orbifolds.

Marcel Hagelberg, Rubén A. Hidalgo (1997)

Revista Matemática Iberoamericana

Similarity:

In this note we construct examples of geometric 3-orbifolds with (orbifold) fundamental group isomorphic to a (Z-extension of a) generalized Coxeter group. Some of these orbifolds have either euclidean, spherical or hyperbolic structure. As an application, we obtain an alternative proof of theorem 1 of Hagelberg, Maclaughlan and Rosenberg in [5]. We also obtain a similar result for generalized Coxeter groups.

Andreev’s Theorem on hyperbolic polyhedra

Roland K.W. Roeder, John H. Hubbard, William D. Dunbar (2007)

Annales de l’institut Fourier

Similarity:

In 1970, E.M.Andreev published a classification of all three-dimensional compact hyperbolic polyhedra (other than tetrahedra) having non-obtuse dihedral angles. Given a combinatorial description of a polyhedron,  C , Andreev’s Theorem provides five classes of linear inequalities, depending on  C , for the dihedral angles, which are necessary and sufficient conditions for the existence of a hyperbolic polyhedron realizing C with the assigned dihedral angles. Andreev’s Theorem also shows that...

Ideal triangulations of hyperbolic 3 -manifolds

Carlo Petronio (2000)

Bollettino dell'Unione Matematica Italiana

Similarity:

Quello delle triangolazioni geodetiche ideali è un metodo molto potente per costruire strutture iperboliche complete di volume finito su 3-varietà non compatte, ma non è noto se il metodo sia applicabile in generale. È tuttavia noto che esistono triangolazioni ideali parzialmente piatte, ma l'analisi della situazione diviene più ardua sotto diversi aspetti, quando si ha a che fare con tetraedri piatti oltre che veri tetraedri. In particolare, la topologia dello spazio di identificazione...