The total torsion element graph of a module over a commutative ring.
Atani, Shahabaddin Ebrahimi, Habibi, Shokoofe (2011)
Analele Ştiinţifice ale Universităţii “Ovidius" Constanţa. Seria: Matematică
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Atani, Shahabaddin Ebrahimi, Habibi, Shokoofe (2011)
Analele Ştiinţifice ale Universităţii “Ovidius" Constanţa. Seria: Matematică
Similarity:
Petrović, Zoran Z., Moconja, Slavko M. (2008)
Novi Sad Journal of Mathematics
Similarity:
N. R. Santhi Maheswari, C. Sekar (2012)
Kragujevac Journal of Mathematics
Similarity:
Matinfar, M., Mirzamani, S. (2008)
The Journal of Nonlinear Sciences and its Applications
Similarity:
Fronček, D. (2000)
Acta Mathematica Universitatis Comenianae. New Series
Similarity:
Chen, Guantao, Egawa, Yoshimi, Kawarabayashi, Ken-ichi, Mohar, Bojan, Ota, Katsuhiro (2011)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Pedersen, Anders Sune (2011)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Ana Hinić (2007)
Matematički Vesnik
Similarity:
Pirzada, S., Dar, F.A. (2007)
Matematichki Vesnik
Similarity:
Oneto R., Ángel V. (1996)
Divulgaciones Matemáticas
Similarity:
Piotr Rudnicki, Lorna Stewart (2012)
Formalized Mathematics
Similarity:
Harary [10, p. 7] claims that Veblen [20, p. 2] first suggested to formalize simple graphs using simplicial complexes. We have developed basic terminology for simple graphs as at most 1-dimensional complexes. We formalize this new setting and then reprove Mycielski’s [12] construction resulting in a triangle-free graph with arbitrarily large chromatic number. A different formalization of similar material is in [15].
Yuichi Futa, Hiroyuki Okazaki, Yasunari Shidama (2012)
Formalized Mathematics
Similarity:
In this article, we formalize Z-module, that is a module over integer ring. Z-module is necassary for lattice problems, LLL (Lenstra-Lenstra-Lovász) base reduction algorithm and cryptographic systems with lattices [11].
Sudhir R. Jog, Satish P. Hande, Ivan Gutman, S. Burcu Bozkurt (2012)
Kragujevac Journal of Mathematics
Similarity: