Z-modules

Yuichi Futa; Hiroyuki Okazaki; Yasunari Shidama

Formalized Mathematics (2012)

  • Volume: 20, Issue: 1, page 47-59
  • ISSN: 1426-2630

Abstract

top
In this article, we formalize Z-module, that is a module over integer ring. Z-module is necassary for lattice problems, LLL (Lenstra-Lenstra-Lovász) base reduction algorithm and cryptographic systems with lattices [11].

How to cite

top

Yuichi Futa, Hiroyuki Okazaki, and Yasunari Shidama. "Z-modules." Formalized Mathematics 20.1 (2012): 47-59. <http://eudml.org/doc/268180>.

@article{YuichiFuta2012,
abstract = {In this article, we formalize Z-module, that is a module over integer ring. Z-module is necassary for lattice problems, LLL (Lenstra-Lenstra-Lovász) base reduction algorithm and cryptographic systems with lattices [11].},
author = {Yuichi Futa, Hiroyuki Okazaki, Yasunari Shidama},
journal = {Formalized Mathematics},
language = {eng},
number = {1},
pages = {47-59},
title = {Z-modules},
url = {http://eudml.org/doc/268180},
volume = {20},
year = {2012},
}

TY - JOUR
AU - Yuichi Futa
AU - Hiroyuki Okazaki
AU - Yasunari Shidama
TI - Z-modules
JO - Formalized Mathematics
PY - 2012
VL - 20
IS - 1
SP - 47
EP - 59
AB - In this article, we formalize Z-module, that is a module over integer ring. Z-module is necassary for lattice problems, LLL (Lenstra-Lenstra-Lovász) base reduction algorithm and cryptographic systems with lattices [11].
LA - eng
UR - http://eudml.org/doc/268180
ER -

References

top
  1. Grzegorz Bancerek. Curried and uncurried functions. Formalized Mathematics, 1(3):537-541, 1990. 
  2. Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990. 
  3. Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990. 
  4. Józef Białas. Group and field definitions. Formalized Mathematics, 1(3):433-439, 1990. 
  5. Czesław Byliński. Basic functions and operations on functions. Formalized Mathematics, 1(1):245-254, 1990. 
  6. Czesław Byliński. Binary operations. Formalized Mathematics, 1(1):175-180, 1990. 
  7. Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990. 
  8. Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990. 
  9. Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357-367, 1990. 
  10. Czesław Byliński. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990. 
  11. Daniele Micciancio and Shafi Goldwasser. Complexity of lattice problems: A cryptographic perspective (the international series in engineering and computer science). 2002. Zbl1140.94010
  12. Christoph Schwarzweller. The binomial theorem for algebraic structures. Formalized Mathematics, 9(3):559-564, 2001. 
  13. Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990. 
  14. Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97-105, 1990. 
  15. Michał J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990. 
  16. Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990. 
  17. Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990. 
  18. Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990. 
  19. Stanisław Żukowski. Introduction to lattice theory. Formalized Mathematics, 1(1):215-222, 1990. 

Citations in EuDML Documents

top
  1. Yuichi Futa, Hiroyuki Okazaki, Yasunari Shidama, Quotient Module of Z-module
  2. Roland Coghetto, Groups – Additive Notation
  3. Yuichi Futa, Hiroyuki Okazaki, Daichi Mizushima, Yasunari Shidama, Gaussian Integers
  4. Yuichi Futa, Hiroyuki Okazaki, Yasunari Shidama, Free ℤ-module
  5. Yuichi Futa, Hiroyuki Okazaki, Yasunari Shidama, Submodule of free Z-module
  6. Yuichi Futa, Hiroyuki Okazaki, Yasunari Shidama, Matrix of ℤ-module1
  7. Kazuhisa Nakasho, Yuichi Futa, Hiroyuki Okazaki, Yasunari Shidama, Rank of Submodule, Linear Transformations and Linearly Independent Subsets of Z-module
  8. Yuichi Futa, Yasunari Shidama, Lattice of ℤ-module
  9. Yuichi Futa, Hiroyuki Okazaki, Kazuhisa Nakasho, Yasunari Shidama, Torsion Z-module and Torsion-free Z-module
  10. Yuichi Futa, Hiroyuki Okazaki, Yasunari Shidama, Torsion Part of ℤ-module

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.