A note on stability of minimal surfaces in -dimensional hyperbolic space .
Li, Haizhong (1997)
Publications de l'Institut Mathématique. Nouvelle Série
Similarity:
Li, Haizhong (1997)
Publications de l'Institut Mathématique. Nouvelle Série
Similarity:
Alexander G. Reznikov (1992)
Publicacions Matemàtiques
Similarity:
We show that the apparatus of support functions, usually used in convex surfaces theory, leads to the linear equation Δh + 2h = 0 describing locally germs of minimal surfaces. Here Δ is the Laplace-Beltrami operator on the standard two-dimensional sphere. It explains the existence of the sum operator of minimal surfaces, introduced recently. In 4-dimensional space the equation Δ h + 2h = 0 becomes inequality wherever the Gauss curvature of a minimal hypersurface is nonzero.
Renato de Azevedo Tribuzy, Irwen Valle Guadalupe (1985)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Harold Rosenberg (1991-1992)
Séminaire Bourbaki
Similarity:
Rossman, Wayne, Sato, Katsunori (1998)
Experimental Mathematics
Similarity:
Ricardo Sa Earp, Eric Toubiana (2000-2001)
Séminaire de théorie spectrale et géométrie
Similarity:
Michael T. Anderson (1985)
Annales scientifiques de l'École Normale Supérieure
Similarity:
Irwen Valle Guadalupe (1995)
Rendiconti del Seminario Matematico della Università di Padova
Similarity: