The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Infinite combinatorics in Function spaces: Category methods”

Exceptional directions for Sierpiński's nonmeasurable sets

B. Kirchheim, Tomasz Natkaniec (1992)

Fundamenta Mathematicae

Similarity:

In [2] the question was considered in how many directions can a nonmeasurable plane set behave even "better" than the classical one constructed by Sierpiński in [6], in the sense that any line in a given direction intersects the set in at most one point. We considerably improve these results and give a much sharper estimate for the size of the sets of those "better" directions.

Fragmentability and σ-fragmentability

J. Jayne, I. Namioka, C. Rogers (1993)

Fundamenta Mathematicae

Similarity:

Recent work has studied the fragmentability and σ-fragmentability properties of Banach spaces. Here examples are given that justify the definitions that have been used. The fragmentability and σ-fragmentability properties of the spaces and c ( Γ ) , with Γ uncountable, are determined.

Universally Kuratowski–Ulam spaces

David Fremlin, Tomasz Natkaniec, Ireneusz Recław (2000)

Fundamenta Mathematicae

Similarity:

We introduce the notions of Kuratowski-Ulam pairs of topological spaces and universally Kuratowski-Ulam space. A pair (X,Y) of topological spaces is called a Kuratowski-Ulam pair if the Kuratowski-Ulam Theorem holds in X× Y. A space Y is called a universally Kuratowski-Ulam (uK-U) space if (X,Y) is a Kuratowski-Ulam pair for every space X. Obviously, every meager in itself space is uK-U. Moreover, it is known that every space with a countable π-basis is uK-U. We prove the following: ...