The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Application of the Quasiasymptotic boundedness of distributions of Wavelet transform”

Inversion Formulas for the q-Riemann-Liouville and q-Weyl Transforms Using Wavelets

Fitouhi, Ahmed, Bettaibi, Néji, Binous, Wafa (2007)

Fractional Calculus and Applied Analysis

Similarity:

Mathematics Subject Classification: 42A38, 42C40, 33D15, 33D60 This paper aims to study the q-wavelets and the continuous q-wavelet transforms, associated with the q-Bessel operator for a fixed q ∈]0, 1[. Using the q-Riemann-Liouville and the q-Weyl transforms, we give some relations between the continuous q-wavelet transform, studied in [3], and the continuous q-wavelet transform associated with the q-Bessel operator, and we deduce formulas which give the inverse operators...

An extension of distributional wavelet transform

R. Roopkumar (2009)

Colloquium Mathematicae

Similarity:

We construct a new Boehmian space containing the space 𝓢̃'(ℝⁿ×ℝ₊) and define the extended wavelet transform 𝓦 of a new Boehmian as a tempered Boehmian. In analogy to the distributional wavelet transform, it is proved that the extended wavelet transform is linear, one-to-one, and continuous with respect to δ-convergence as well as Δ-convergence.

Wavelet transform for functions with values in UMD spaces

Cornelia Kaiser, Lutz Weis (2008)

Studia Mathematica

Similarity:

We extend the classical theory of the continuous and discrete wavelet transform to functions with values in UMD spaces. As a by-product we obtain equivalent norms on Bochner spaces in terms of g-functions.