The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On the Radius and the Relation Between the Total Graph of a Commutative Ring and Its Extensions”

On L-ideal-based L-zero-divisor graphs

S. Ebrahimi Atani, M. Shajari Kohan (2011)

Discussiones Mathematicae - General Algebra and Applications

Similarity:

In a manner analogous to a commutative ring, the L-ideal-based L-zero-divisor graph of a commutative ring R can be defined as the undirected graph Γ(μ) for some L-ideal μ of R. The basic properties and possible structures of the graph Γ(μ) are studied.

On the connectivity of the annihilating-ideal graphs

T. Tamizh Chelvam, K. Selvakumar (2015)

Discussiones Mathematicae - General Algebra and Applications

Similarity:

Let R be a commutative ring with identity and 𝔸*(R) the set of non-zero ideals with non-zero annihilators. The annihilating-ideal graph of R is defined as the graph 𝔸𝔾(R) with the vertex set 𝔸*(R) and two distinct vertices I₁ and I₂ are adjacent if and only if I₁I₂ = (0). In this paper, we examine the presence of cut vertices and cut sets in the annihilating-ideal graph of a commutative Artinian ring and provide a partial classification of the rings in which they appear. Using this,...

Ring elements as sums of units

Charles Lanski, Attila Maróti (2009)

Open Mathematics

Similarity:

In an Artinian ring R every element of R can be expressed as the sum of two units if and only if R/J(R) does not contain a summand isomorphic to the field with two elements. This result is used to describe those finite rings R for which Γ(R) contains a Hamiltonian cycle where Γ(R) is the (simple) graph defined on the elements of R with an edge between vertices r and s if and only if r - s is invertible. It is also shown that for an Artinian ring R the number of connected components of...

An ideal-based zero-divisor graph of direct products of commutative rings

S. Ebrahimi Atani, M. Shajari Kohan, Z. Ebrahimi Sarvandi (2014)

Discussiones Mathematicae - General Algebra and Applications

Similarity:

In this paper, specifically, we look at the preservation of the diameter and girth of the zero-divisor graph with respect to an ideal of a commutative ring when extending to a finite direct product of commutative rings.

Rings with zero intersection property on annihilators: Zip rings.

Carl Faith (1989)

Publicacions Matemàtiques

Similarity:

Zelmanowitz [12] introduced the concept of ring, which we call right zip rings, with the defining properties below, which are equivalent: (ZIP 1) If the right anihilator X of a subset X of R is zero, then X1 = 0 for a finite subset X1 ⊆ X. (ZIP 2) If L is a left ideal and if L = 0, then L1 ...