On L-ideal-based L-zero-divisor graphs
S. Ebrahimi Atani; M. Shajari Kohan
Discussiones Mathematicae - General Algebra and Applications (2011)
- Volume: 31, Issue: 2, page 127-145
- ISSN: 1509-9415
Access Full Article
topAbstract
topHow to cite
topS. Ebrahimi Atani, and M. Shajari Kohan. "On L-ideal-based L-zero-divisor graphs." Discussiones Mathematicae - General Algebra and Applications 31.2 (2011): 127-145. <http://eudml.org/doc/276474>.
@article{S2011,
abstract = {In a manner analogous to a commutative ring, the L-ideal-based L-zero-divisor graph of a commutative ring R can be defined as the undirected graph Γ(μ) for some L-ideal μ of R. The basic properties and possible structures of the graph Γ(μ) are studied.},
author = {S. Ebrahimi Atani, M. Shajari Kohan},
journal = {Discussiones Mathematicae - General Algebra and Applications},
keywords = {μ-Zero-divisor; L-zero-divisor graph; μ-diameter; μ-girth; μ-nilradical ideal; μ-domainlike ring; -zero-divisor; -zero-divisor graph; -diameter; -girth; -nilradical ideal; -domainlike ring},
language = {eng},
number = {2},
pages = {127-145},
title = {On L-ideal-based L-zero-divisor graphs},
url = {http://eudml.org/doc/276474},
volume = {31},
year = {2011},
}
TY - JOUR
AU - S. Ebrahimi Atani
AU - M. Shajari Kohan
TI - On L-ideal-based L-zero-divisor graphs
JO - Discussiones Mathematicae - General Algebra and Applications
PY - 2011
VL - 31
IS - 2
SP - 127
EP - 145
AB - In a manner analogous to a commutative ring, the L-ideal-based L-zero-divisor graph of a commutative ring R can be defined as the undirected graph Γ(μ) for some L-ideal μ of R. The basic properties and possible structures of the graph Γ(μ) are studied.
LA - eng
KW - μ-Zero-divisor; L-zero-divisor graph; μ-diameter; μ-girth; μ-nilradical ideal; μ-domainlike ring; -zero-divisor; -zero-divisor graph; -diameter; -girth; -nilradical ideal; -domainlike ring
UR - http://eudml.org/doc/276474
ER -
References
top- [1] D.F. Anderson and P.S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (1999), 434-447. doi: 10.1006/jabr.1998.7840 Zbl0941.05062
- [2] D.F. Anderson and S.B. Mulay, On the diameter and girth of a zero-divisor graph, J. Pure App. Algebra 210 (2) (2007), 543-550. doi: 10.1016/j.jpaa.2006.10.007 Zbl1119.13005
- [3] D.F. Anderson and A. Badawi, On the zero-divisor graph of a ring, Comm. Algebra 36 (2008), 3073-3092. doi: 10.1080/00927870802110888 Zbl1152.13001
- [4] M. Axtell, J. Coykendall and J. Stickles, Zero-divisor graphs of polynomial and power series over commutative rings, Comm. Algebra 33 (2005), 2043-2050. doi:10.1081/AGB-200063357 Zbl1088.13006
- [5] D.D. Anderson and S. Valdes-Leon, Factorization in commutative rings with zero-divisors, Rocky Mountain J. of Math. 26 (1996), 439-480. doi: 10.1216/rmjm/1181072068 Zbl0865.13001
- [6] I. Beck, Coloring of commutative rings, J. Algebra 116 (1988) 208-226. doi: 10.1016/0021-8693(88)90202-5
- [7] S. Ebrahimi Atani, An ideal-based zero-divisor graph of a commutative semiring, Glasnik Matematicki 44 (64) (2009), 141-153. doi: 10.3336/gm.44.1.07 Zbl1181.16041
- [8] I. Goguen, L-fuzzy sets, J. Math. Appl. 18 (1967), 145-174. Zbl0145.24404
- [9] K.H. Lee and J.N. Mordeson, Fractionary fuzzy ideals and Dedekind domains, Fuzzy Sets and Systems 99 (1998), 105-110. doi: 10.1016/S0165-0114(97)00012-2 Zbl0943.13003
- [10] W.J. Liu, Operation on fuzzy ideals, Fuzzy Sets and Systems 11 (1983), 31-41. Zbl0522.06013
- [11] L. Martinez, Prime and primary L-fuzzy ideals of L-fuzzy rings, Fuzzy Sets and Systems 101 (1999), 489-494. doi: 10.1016/S0165-0114(97)00114-0
- [12] J.N. Mordeson and D.S. Malik, Fuzzy Commutative Algebra, J. World Scientific Publishing, Singapore, 1998.
- [13] S.B. Mulay, Cycles and symmetries of zero-divisors, Comm. Algebra 30 (7) (2002), 3533-3558. doi: 10.1081/AGB-120004502 Zbl1087.13500
- [14] A. Rosenfeld, Fuzzy groups, J. Math. Appl. 35 (1971), 512-517. Zbl0194.05501
- [15] S. Redmond, The zero-divisor graph of a non-commutative ring, International J. Commutative rings 1 (4) (2002), 203-211. Zbl1195.16038
- [16] S. Redmond, Central sets and radii of the zero-divisor graphs of commutative rings, Comm. Algebra 34 (2006), 2389-2401. doi: 10.1080/00927870600649103 Zbl1105.13007
- [17] A. Rosenfeld and Fuzzy graphs, In fuzzy sets and their applications to Cognitive and Decision Processes, Zadeh L.A, Fu K.S., Shimura M., Eds, Academic Press, New York (1975), 77-95.
- [18] F.I. Sidky, On radicals of fuzzy submodules and primary fuzzy submodules, Fuzzy Sets and Systems 119 (2001), 419-425. doi: 10.1016/S0165-0114(99)00101-3 Zbl1023.13009
- [19] R.T Yeh and S.Y. Banh, Fuzzy relations, fuzzy graphs and their applications to clustering analysis, In Fuzzy sets and their applications to Cognitive and Decision Processes, Zadeh L.A, Fu K.S., Shimura M., Eds, Academic Press, New York (1975), 125-149.
- [20] L.A. Zadeh, Fuzzy sets, Inform and Control 8 (1965), 338-353. doi: 10.1016/S0019-9958(65)90241-X Zbl0139.24606
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.