# On L-ideal-based L-zero-divisor graphs

S. Ebrahimi Atani; M. Shajari Kohan

Discussiones Mathematicae - General Algebra and Applications (2011)

- Volume: 31, Issue: 2, page 127-145
- ISSN: 1509-9415

## Access Full Article

top## Abstract

top## How to cite

topS. Ebrahimi Atani, and M. Shajari Kohan. "On L-ideal-based L-zero-divisor graphs." Discussiones Mathematicae - General Algebra and Applications 31.2 (2011): 127-145. <http://eudml.org/doc/276474>.

@article{S2011,

abstract = {In a manner analogous to a commutative ring, the L-ideal-based L-zero-divisor graph of a commutative ring R can be defined as the undirected graph Γ(μ) for some L-ideal μ of R. The basic properties and possible structures of the graph Γ(μ) are studied.},

author = {S. Ebrahimi Atani, M. Shajari Kohan},

journal = {Discussiones Mathematicae - General Algebra and Applications},

keywords = {μ-Zero-divisor; L-zero-divisor graph; μ-diameter; μ-girth; μ-nilradical ideal; μ-domainlike ring; -zero-divisor; -zero-divisor graph; -diameter; -girth; -nilradical ideal; -domainlike ring},

language = {eng},

number = {2},

pages = {127-145},

title = {On L-ideal-based L-zero-divisor graphs},

url = {http://eudml.org/doc/276474},

volume = {31},

year = {2011},

}

TY - JOUR

AU - S. Ebrahimi Atani

AU - M. Shajari Kohan

TI - On L-ideal-based L-zero-divisor graphs

JO - Discussiones Mathematicae - General Algebra and Applications

PY - 2011

VL - 31

IS - 2

SP - 127

EP - 145

AB - In a manner analogous to a commutative ring, the L-ideal-based L-zero-divisor graph of a commutative ring R can be defined as the undirected graph Γ(μ) for some L-ideal μ of R. The basic properties and possible structures of the graph Γ(μ) are studied.

LA - eng

KW - μ-Zero-divisor; L-zero-divisor graph; μ-diameter; μ-girth; μ-nilradical ideal; μ-domainlike ring; -zero-divisor; -zero-divisor graph; -diameter; -girth; -nilradical ideal; -domainlike ring

UR - http://eudml.org/doc/276474

ER -

## References

top- [1] D.F. Anderson and P.S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217 (1999), 434-447. doi: 10.1006/jabr.1998.7840 Zbl0941.05062
- [2] D.F. Anderson and S.B. Mulay, On the diameter and girth of a zero-divisor graph, J. Pure App. Algebra 210 (2) (2007), 543-550. doi: 10.1016/j.jpaa.2006.10.007 Zbl1119.13005
- [3] D.F. Anderson and A. Badawi, On the zero-divisor graph of a ring, Comm. Algebra 36 (2008), 3073-3092. doi: 10.1080/00927870802110888 Zbl1152.13001
- [4] M. Axtell, J. Coykendall and J. Stickles, Zero-divisor graphs of polynomial and power series over commutative rings, Comm. Algebra 33 (2005), 2043-2050. doi:10.1081/AGB-200063357 Zbl1088.13006
- [5] D.D. Anderson and S. Valdes-Leon, Factorization in commutative rings with zero-divisors, Rocky Mountain J. of Math. 26 (1996), 439-480. doi: 10.1216/rmjm/1181072068 Zbl0865.13001
- [6] I. Beck, Coloring of commutative rings, J. Algebra 116 (1988) 208-226. doi: 10.1016/0021-8693(88)90202-5
- [7] S. Ebrahimi Atani, An ideal-based zero-divisor graph of a commutative semiring, Glasnik Matematicki 44 (64) (2009), 141-153. doi: 10.3336/gm.44.1.07 Zbl1181.16041
- [8] I. Goguen, L-fuzzy sets, J. Math. Appl. 18 (1967), 145-174. Zbl0145.24404
- [9] K.H. Lee and J.N. Mordeson, Fractionary fuzzy ideals and Dedekind domains, Fuzzy Sets and Systems 99 (1998), 105-110. doi: 10.1016/S0165-0114(97)00012-2 Zbl0943.13003
- [10] W.J. Liu, Operation on fuzzy ideals, Fuzzy Sets and Systems 11 (1983), 31-41. Zbl0522.06013
- [11] L. Martinez, Prime and primary L-fuzzy ideals of L-fuzzy rings, Fuzzy Sets and Systems 101 (1999), 489-494. doi: 10.1016/S0165-0114(97)00114-0
- [12] J.N. Mordeson and D.S. Malik, Fuzzy Commutative Algebra, J. World Scientific Publishing, Singapore, 1998.
- [13] S.B. Mulay, Cycles and symmetries of zero-divisors, Comm. Algebra 30 (7) (2002), 3533-3558. doi: 10.1081/AGB-120004502 Zbl1087.13500
- [14] A. Rosenfeld, Fuzzy groups, J. Math. Appl. 35 (1971), 512-517. Zbl0194.05501
- [15] S. Redmond, The zero-divisor graph of a non-commutative ring, International J. Commutative rings 1 (4) (2002), 203-211. Zbl1195.16038
- [16] S. Redmond, Central sets and radii of the zero-divisor graphs of commutative rings, Comm. Algebra 34 (2006), 2389-2401. doi: 10.1080/00927870600649103 Zbl1105.13007
- [17] A. Rosenfeld and Fuzzy graphs, In fuzzy sets and their applications to Cognitive and Decision Processes, Zadeh L.A, Fu K.S., Shimura M., Eds, Academic Press, New York (1975), 77-95.
- [18] F.I. Sidky, On radicals of fuzzy submodules and primary fuzzy submodules, Fuzzy Sets and Systems 119 (2001), 419-425. doi: 10.1016/S0165-0114(99)00101-3 Zbl1023.13009
- [19] R.T Yeh and S.Y. Banh, Fuzzy relations, fuzzy graphs and their applications to clustering analysis, In Fuzzy sets and their applications to Cognitive and Decision Processes, Zadeh L.A, Fu K.S., Shimura M., Eds, Academic Press, New York (1975), 125-149.
- [20] L.A. Zadeh, Fuzzy sets, Inform and Control 8 (1965), 338-353. doi: 10.1016/S0019-9958(65)90241-X Zbl0139.24606

## Citations in EuDML Documents

top## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.