The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Bifurcations and Attractors in Bogdanov Map”

Breaking the continuity of a piecewise linear map

Viktor Avrutin, Michael Schanz, Björn Schenke (2012)

ESAIM: Proceedings

Similarity:

Knowledge about the behavior of discontinuous piecewise-linear maps is important for a wide range of applications. An efficient way to investigate the bifurcation structure in 2D parameter spaces of such maps is to detect specific codimension-2 bifurcation points, called organizing centers, and to describe the bifurcation structure in their neighborhood. In this work, we present the organizing centers in the 1D discontinuous piecewise-linear...

One-Parameter Bifurcation Analysis of Dynamical Systems using Maple

Borisov, Milen, Dimitrova, Neli (2010)

Serdica Journal of Computing

Similarity:

This paper presents two algorithms for one-parameter local bifurcations of equilibrium points of dynamical systems. The algorithms are implemented in the computer algebra system Maple 13 © and designed as a package. Some examples are reported to demonstrate the package’s facilities. * This paper is partially supported by the Bulgarian Science Fund under grant Nr. DO 02–359/2008.

Degenerate Hopf bifurcations and the formation mechanism of chaos in the Qi 3-D four-wing chaotic system

Hongtao Liang, Yanxia Tang, Li Li, Zhouchao Wei, Zhen Wang (2013)

Kybernetika

Similarity:

In order to further understand a complex 3-D dynamical system proposed by Qi et al, showing four-wing chaotic attractors with very complicated topological structures over a large range of parameters, we study degenerate Hopf bifurcations in the system. It exhibits the result of a period-doubling cascade to chaos from a Hopf bifurcation point. The theoretical analysis and simulations demonstrate the rich dynamics of the system.