Degenerate Hopf bifurcations and the formation mechanism of chaos in the Qi 3-D four-wing chaotic system

Hongtao Liang; Yanxia Tang; Li Li; Zhouchao Wei; Zhen Wang

Kybernetika (2013)

  • Volume: 49, Issue: 6, page 935-947
  • ISSN: 0023-5954

Abstract

top
In order to further understand a complex 3-D dynamical system proposed by Qi et al, showing four-wing chaotic attractors with very complicated topological structures over a large range of parameters, we study degenerate Hopf bifurcations in the system. It exhibits the result of a period-doubling cascade to chaos from a Hopf bifurcation point. The theoretical analysis and simulations demonstrate the rich dynamics of the system.

How to cite

top

Liang, Hongtao, et al. "Degenerate Hopf bifurcations and the formation mechanism of chaos in the Qi 3-D four-wing chaotic system." Kybernetika 49.6 (2013): 935-947. <http://eudml.org/doc/260817>.

@article{Liang2013,
abstract = {In order to further understand a complex 3-D dynamical system proposed by Qi et al, showing four-wing chaotic attractors with very complicated topological structures over a large range of parameters, we study degenerate Hopf bifurcations in the system. It exhibits the result of a period-doubling cascade to chaos from a Hopf bifurcation point. The theoretical analysis and simulations demonstrate the rich dynamics of the system.},
author = {Liang, Hongtao, Tang, Yanxia, Li, Li, Wei, Zhouchao, Wang, Zhen},
journal = {Kybernetika},
keywords = {four-wing chaotic attractors; Lyapunov coefficient; degenerate Hopf bifurcations; period-doubling cascade; four-wing chaotic attractors; Lyapunov coefficient; degenerate Hopf bifurcations; period-doubling cascade},
language = {eng},
number = {6},
pages = {935-947},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Degenerate Hopf bifurcations and the formation mechanism of chaos in the Qi 3-D four-wing chaotic system},
url = {http://eudml.org/doc/260817},
volume = {49},
year = {2013},
}

TY - JOUR
AU - Liang, Hongtao
AU - Tang, Yanxia
AU - Li, Li
AU - Wei, Zhouchao
AU - Wang, Zhen
TI - Degenerate Hopf bifurcations and the formation mechanism of chaos in the Qi 3-D four-wing chaotic system
JO - Kybernetika
PY - 2013
PB - Institute of Information Theory and Automation AS CR
VL - 49
IS - 6
SP - 935
EP - 947
AB - In order to further understand a complex 3-D dynamical system proposed by Qi et al, showing four-wing chaotic attractors with very complicated topological structures over a large range of parameters, we study degenerate Hopf bifurcations in the system. It exhibits the result of a period-doubling cascade to chaos from a Hopf bifurcation point. The theoretical analysis and simulations demonstrate the rich dynamics of the system.
LA - eng
KW - four-wing chaotic attractors; Lyapunov coefficient; degenerate Hopf bifurcations; period-doubling cascade; four-wing chaotic attractors; Lyapunov coefficient; degenerate Hopf bifurcations; period-doubling cascade
UR - http://eudml.org/doc/260817
ER -

References

top
  1. Chen, G. R., Ueta, T., 10.1142/S0218127499001024, Internat. J. Bifur. Chaos 9 (1999), 1465-1466. Zbl0962.37013MR1729683DOI10.1142/S0218127499001024
  2. Kuznetsov, Y. A., Elements of Applied Bifurcation Theory, Second edition., Springer-Verlag, New York 1998. MR1711790
  3. Lorenz, E. N., 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2, J. Atmospheric Sci. 20 (1963), 130-141. DOI10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
  4. Lü, J. H., Chen, G. R., 10.1142/S0218127402004620, Internat. J. Bifur. Chaos 12 (2002), 659-661. MR1894886DOI10.1142/S0218127402004620
  5. Lü, J. H., Chen, G. R., Cheng, D. Z., 10.1142/S021812740401014X, Internat. J. Bifur. Chaos 14 (2004), 1507-1537. Zbl1129.37323MR2072347DOI10.1142/S021812740401014X
  6. Lü, J. H., Han, F. L., Yu, X. H., Chen, G. R., 10.1016/j.automatica.2004.06.001, Automatica 40 (2004), 1677-1687. Zbl1162.93353MR2155461DOI10.1016/j.automatica.2004.06.001
  7. Lü, J. H., Yu, S. M., Leung, H., Chen, G. R., 10.1109/TCSI.2005.854412, IEEE Trans. Circuits Systems I: Regular Papers 53 (2006), 149-165. DOI10.1109/TCSI.2005.854412
  8. Lü, J. H., Zhou, T. S., Chen, G. R, Zhan, S. C., 10.1142/S0218127402005819, Internat. J. Bifur. Chaos 12 (2002), 2257-2270. MR1941281DOI10.1142/S0218127402005819
  9. Mello, L. F., Coelho, S. F., 10.1016/j.physleta.2009.01.049, Phys. Lett. A 373 (2009), 1116-1120. MR2489562DOI10.1016/j.physleta.2009.01.049
  10. Messias, M., Braga, D. C., Mello, L. F., 10.1142/S0218127409023159, Internat. J. Bifur. Chaos 19 (2009), 497-515. MR2510108DOI10.1142/S0218127409023159
  11. Qi, G. Y., Chen, G. R., Wyk, M. A., Wyk, B. J., Zhang, Y., A four-wing chaotic attractor generated from a new 3-D quadratic autonomous system., Chaos Soliton Fract. 38 (2008), 705-721. Zbl1146.37332MR2423359
  12. Rössler, O. E., 10.1016/0375-9601(76)90101-8, Phys. Lett. A 57 (1976), 397-398. DOI10.1016/0375-9601(76)90101-8
  13. Shaw, R., Strange attractor, chaotic behaviour and information flow., Z.Naturfosch. A 36 (1981), 80-112. MR0604920
  14. Sotomayor, S., Mello, L. F., Braga, D. C., Bifurcation analysis of the Watt governor system., Comm. Appl. Math. 26(2007), 19-44. Zbl1182.70038MR2320256
  15. Sotomayor, S., Mello, L. F., Braga, D. C., Lyapunov coefficients for degenerate Hopf bifurcations., arXiv:0709.3949v1 [math.DS], http://arxiv.org/. 
  16. Sprott, J. C., 10.1103/PhysRevE.50.R647, Phys. Rev. E 50 (1994), 647-650. MR1381868DOI10.1103/PhysRevE.50.R647
  17. Sprott, J. C., 10.1016/S0375-9601(00)00026-8, Phys. Lett. A 266 (2000), 19-23. DOI10.1016/S0375-9601(00)00026-8
  18. Sprott, J. C., 10.1016/S0375-9601(97)00088-1, Phys. Lett. A 228 (1997), 271-274. Zbl1043.37504MR1442639DOI10.1016/S0375-9601(97)00088-1
  19. Sun, Y., Qi, G. Y., Wang, Z., Wyk, B. J., Bifurcation analysis of the Qi 3-D four-wing chaotic system., Acta Phys. Pol. B 41 (2010), 767-778. 
  20. Schrier, G. van der, Maas, L. R. M., The diffusionless Lorenz equations; Silnikov bifurcations and reduction to an explicit map., Physica D 141 (2000), 19-36. MR1764166
  21. Wang, X., Chen, G. R., 10.1016/j.cnsns.2011.07.017, Commun. Nonlinear Sci. Numer. Simul. 17 (2012), 1264-1272. MR2843793DOI10.1016/j.cnsns.2011.07.017
  22. Wei, Z. C., Yang, Q. G., Dynamical analysis of a new autonomous 3-D chaotic system only with stable equilibria., Nonlinear Anal. RWA 12 (2011), 106-118. Zbl1213.37061MR2728666
  23. Wei, Z. C., Yang, Q. G., Dynamical analysis of the generalized Sprott C system with only two stable equilibria., Nonlinear Dyn. 68 (2012), 543-554. Zbl1252.93067MR2928053
  24. Wei, Z. C., Yang, Q. G., Dynamical analysis of a new autonomous 3-D chaotic system only with stable equilibria., Nonlinear Anal. RWA. 12 (2011), 106-118. Zbl1213.37061MR2728666
  25. Wei, Z. C., Yang, Q. G., 10.1016/j.amc.2010.05.035, Appl. Math. Comput. 217 (2010), 422-429. Zbl1200.65102MR2672602DOI10.1016/j.amc.2010.05.035
  26. Yang, Q. G., Chen, G. R., Huang, K. F., 10.1142/S0218127407019792, Internat. J. Bifur. Chaos 17 (2007), 3929-3949. Zbl1149.37308MR2384392DOI10.1142/S0218127407019792
  27. Yang, Q. G., Chen, G. R., 10.1142/S0218127408021063, Internat. J. Bifur. Chaos 18 (2008), 1393-1414. Zbl1147.34306MR2427132DOI10.1142/S0218127408021063
  28. Yang, Q. G., Wei, Z. C., Chen, G. R., 10.1142/S0218127410026320, Internat. J. Bifur. Chaos 20 (2010), 1061-1083. MR2660159DOI10.1142/S0218127410026320
  29. Yu, S. M., Lü, J. H., Yu, X. H., 10.1109/TCSI.2011.2180429, IEEE Trans. Circuits Systems I: Regular Papers 59 (2012), 1015-1028. MR2924533DOI10.1109/TCSI.2011.2180429

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.