Degenerate Hopf bifurcations and the formation mechanism of chaos in the Qi 3-D four-wing chaotic system
Hongtao Liang; Yanxia Tang; Li Li; Zhouchao Wei; Zhen Wang
Kybernetika (2013)
- Volume: 49, Issue: 6, page 935-947
- ISSN: 0023-5954
Access Full Article
topAbstract
topHow to cite
topLiang, Hongtao, et al. "Degenerate Hopf bifurcations and the formation mechanism of chaos in the Qi 3-D four-wing chaotic system." Kybernetika 49.6 (2013): 935-947. <http://eudml.org/doc/260817>.
@article{Liang2013,
abstract = {In order to further understand a complex 3-D dynamical system proposed by Qi et al, showing four-wing chaotic attractors with very complicated topological structures over a large range of parameters, we study degenerate Hopf bifurcations in the system. It exhibits the result of a period-doubling cascade to chaos from a Hopf bifurcation point. The theoretical analysis and simulations demonstrate the rich dynamics of the system.},
author = {Liang, Hongtao, Tang, Yanxia, Li, Li, Wei, Zhouchao, Wang, Zhen},
journal = {Kybernetika},
keywords = {four-wing chaotic attractors; Lyapunov coefficient; degenerate Hopf bifurcations; period-doubling cascade; four-wing chaotic attractors; Lyapunov coefficient; degenerate Hopf bifurcations; period-doubling cascade},
language = {eng},
number = {6},
pages = {935-947},
publisher = {Institute of Information Theory and Automation AS CR},
title = {Degenerate Hopf bifurcations and the formation mechanism of chaos in the Qi 3-D four-wing chaotic system},
url = {http://eudml.org/doc/260817},
volume = {49},
year = {2013},
}
TY - JOUR
AU - Liang, Hongtao
AU - Tang, Yanxia
AU - Li, Li
AU - Wei, Zhouchao
AU - Wang, Zhen
TI - Degenerate Hopf bifurcations and the formation mechanism of chaos in the Qi 3-D four-wing chaotic system
JO - Kybernetika
PY - 2013
PB - Institute of Information Theory and Automation AS CR
VL - 49
IS - 6
SP - 935
EP - 947
AB - In order to further understand a complex 3-D dynamical system proposed by Qi et al, showing four-wing chaotic attractors with very complicated topological structures over a large range of parameters, we study degenerate Hopf bifurcations in the system. It exhibits the result of a period-doubling cascade to chaos from a Hopf bifurcation point. The theoretical analysis and simulations demonstrate the rich dynamics of the system.
LA - eng
KW - four-wing chaotic attractors; Lyapunov coefficient; degenerate Hopf bifurcations; period-doubling cascade; four-wing chaotic attractors; Lyapunov coefficient; degenerate Hopf bifurcations; period-doubling cascade
UR - http://eudml.org/doc/260817
ER -
References
top- Chen, G. R., Ueta, T., 10.1142/S0218127499001024, Internat. J. Bifur. Chaos 9 (1999), 1465-1466. Zbl0962.37013MR1729683DOI10.1142/S0218127499001024
- Kuznetsov, Y. A., Elements of Applied Bifurcation Theory, Second edition., Springer-Verlag, New York 1998. MR1711790
- Lorenz, E. N., 10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2, J. Atmospheric Sci. 20 (1963), 130-141. DOI10.1175/1520-0469(1963)020<0130:DNF>2.0.CO;2
- Lü, J. H., Chen, G. R., 10.1142/S0218127402004620, Internat. J. Bifur. Chaos 12 (2002), 659-661. MR1894886DOI10.1142/S0218127402004620
- Lü, J. H., Chen, G. R., Cheng, D. Z., 10.1142/S021812740401014X, Internat. J. Bifur. Chaos 14 (2004), 1507-1537. Zbl1129.37323MR2072347DOI10.1142/S021812740401014X
- Lü, J. H., Han, F. L., Yu, X. H., Chen, G. R., 10.1016/j.automatica.2004.06.001, Automatica 40 (2004), 1677-1687. Zbl1162.93353MR2155461DOI10.1016/j.automatica.2004.06.001
- Lü, J. H., Yu, S. M., Leung, H., Chen, G. R., 10.1109/TCSI.2005.854412, IEEE Trans. Circuits Systems I: Regular Papers 53 (2006), 149-165. DOI10.1109/TCSI.2005.854412
- Lü, J. H., Zhou, T. S., Chen, G. R, Zhan, S. C., 10.1142/S0218127402005819, Internat. J. Bifur. Chaos 12 (2002), 2257-2270. MR1941281DOI10.1142/S0218127402005819
- Mello, L. F., Coelho, S. F., 10.1016/j.physleta.2009.01.049, Phys. Lett. A 373 (2009), 1116-1120. MR2489562DOI10.1016/j.physleta.2009.01.049
- Messias, M., Braga, D. C., Mello, L. F., 10.1142/S0218127409023159, Internat. J. Bifur. Chaos 19 (2009), 497-515. MR2510108DOI10.1142/S0218127409023159
- Qi, G. Y., Chen, G. R., Wyk, M. A., Wyk, B. J., Zhang, Y., A four-wing chaotic attractor generated from a new 3-D quadratic autonomous system., Chaos Soliton Fract. 38 (2008), 705-721. Zbl1146.37332MR2423359
- Rössler, O. E., 10.1016/0375-9601(76)90101-8, Phys. Lett. A 57 (1976), 397-398. DOI10.1016/0375-9601(76)90101-8
- Shaw, R., Strange attractor, chaotic behaviour and information flow., Z.Naturfosch. A 36 (1981), 80-112. MR0604920
- Sotomayor, S., Mello, L. F., Braga, D. C., Bifurcation analysis of the Watt governor system., Comm. Appl. Math. 26(2007), 19-44. Zbl1182.70038MR2320256
- Sotomayor, S., Mello, L. F., Braga, D. C., Lyapunov coefficients for degenerate Hopf bifurcations., arXiv:0709.3949v1 [math.DS], http://arxiv.org/.
- Sprott, J. C., 10.1103/PhysRevE.50.R647, Phys. Rev. E 50 (1994), 647-650. MR1381868DOI10.1103/PhysRevE.50.R647
- Sprott, J. C., 10.1016/S0375-9601(00)00026-8, Phys. Lett. A 266 (2000), 19-23. DOI10.1016/S0375-9601(00)00026-8
- Sprott, J. C., 10.1016/S0375-9601(97)00088-1, Phys. Lett. A 228 (1997), 271-274. Zbl1043.37504MR1442639DOI10.1016/S0375-9601(97)00088-1
- Sun, Y., Qi, G. Y., Wang, Z., Wyk, B. J., Bifurcation analysis of the Qi 3-D four-wing chaotic system., Acta Phys. Pol. B 41 (2010), 767-778.
- Schrier, G. van der, Maas, L. R. M., The diffusionless Lorenz equations; Silnikov bifurcations and reduction to an explicit map., Physica D 141 (2000), 19-36. MR1764166
- Wang, X., Chen, G. R., 10.1016/j.cnsns.2011.07.017, Commun. Nonlinear Sci. Numer. Simul. 17 (2012), 1264-1272. MR2843793DOI10.1016/j.cnsns.2011.07.017
- Wei, Z. C., Yang, Q. G., Dynamical analysis of a new autonomous 3-D chaotic system only with stable equilibria., Nonlinear Anal. RWA 12 (2011), 106-118. Zbl1213.37061MR2728666
- Wei, Z. C., Yang, Q. G., Dynamical analysis of the generalized Sprott C system with only two stable equilibria., Nonlinear Dyn. 68 (2012), 543-554. Zbl1252.93067MR2928053
- Wei, Z. C., Yang, Q. G., Dynamical analysis of a new autonomous 3-D chaotic system only with stable equilibria., Nonlinear Anal. RWA. 12 (2011), 106-118. Zbl1213.37061MR2728666
- Wei, Z. C., Yang, Q. G., 10.1016/j.amc.2010.05.035, Appl. Math. Comput. 217 (2010), 422-429. Zbl1200.65102MR2672602DOI10.1016/j.amc.2010.05.035
- Yang, Q. G., Chen, G. R., Huang, K. F., 10.1142/S0218127407019792, Internat. J. Bifur. Chaos 17 (2007), 3929-3949. Zbl1149.37308MR2384392DOI10.1142/S0218127407019792
- Yang, Q. G., Chen, G. R., 10.1142/S0218127408021063, Internat. J. Bifur. Chaos 18 (2008), 1393-1414. Zbl1147.34306MR2427132DOI10.1142/S0218127408021063
- Yang, Q. G., Wei, Z. C., Chen, G. R., 10.1142/S0218127410026320, Internat. J. Bifur. Chaos 20 (2010), 1061-1083. MR2660159DOI10.1142/S0218127410026320
- Yu, S. M., Lü, J. H., Yu, X. H., 10.1109/TCSI.2011.2180429, IEEE Trans. Circuits Systems I: Regular Papers 59 (2012), 1015-1028. MR2924533DOI10.1109/TCSI.2011.2180429
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.