The lower garland of subgroup lattices in linear groups.
Panin, A.A. (2002)
Zapiski Nauchnykh Seminarov POMI
Similarity:
Panin, A.A. (2002)
Zapiski Nauchnykh Seminarov POMI
Similarity:
Marius Tărnăuceanu (2013)
Open Mathematics
Similarity:
In this short note a correct proof of Theorem 3.3 from [Tărnăuceanu M., Solitary quotients of finite groups, Cent. Eur. J. Math., 2012, 10(2), 740–747] is given.
A. Sakowicz (2003)
Colloquium Mathematicae
Similarity:
We give the description of locally finite groups with strongly balanced subgroup lattices and we prove that the strong uniform dimension of such groups exists. Moreover we show how to determine this dimension.
Vlastimil Dlab, Vladimír Kořínek (1960)
Czechoslovak Mathematical Journal
Similarity:
M. E. Adams (1974)
Colloquium Mathematicae
Similarity:
Simion Breaz (2009)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
R. Beazer (1974)
Colloquium Mathematicae
Similarity:
W.A.M. Janssen (1985)
Mathematische Annalen
Similarity:
John C. Lennox, James Wiegold (1995)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
M. De Falco, F. de Giovanni, C. Musella, R. Schmidt (2003)
Colloquium Mathematicae
Similarity:
A group G is called metamodular if for each subgroup H of G either the subgroup lattice 𝔏(H) is modular or H is a modular element of the lattice 𝔏(G). Metamodular groups appear as the natural lattice analogues of groups in which every non-abelian subgroup is normal; these latter groups have been studied by Romalis and Sesekin, and here their results are extended to metamodular groups.