Degree-constrained edge partitioning in graphs arising from discrete tomography.
Bentz, Cedric, Costa, Marie-Christine, Picouleau, Christophe, Ries, Bernard, De Werra, Dominique (2009)
Journal of Graph Algorithms and Applications
Similarity:
Bentz, Cedric, Costa, Marie-Christine, Picouleau, Christophe, Ries, Bernard, De Werra, Dominique (2009)
Journal of Graph Algorithms and Applications
Similarity:
Borodin, O.V., Glebov, A.N., Jensen, Tommy R., Raspaud, Andre (2006)
Sibirskie Ehlektronnye Matematicheskie Izvestiya [electronic only]
Similarity:
Pióro, K. (2003)
Acta Mathematica Universitatis Comenianae. New Series
Similarity:
Hüffner, Falk (2009)
Journal of Graph Algorithms and Applications
Similarity:
Fijavž, Gašper, Wood, David R. (2010)
The Electronic Journal of Combinatorics [electronic only]
Similarity:
Milica Stojanović (2008)
Kragujevac Journal of Mathematics
Similarity:
Ling, Joseph M. (2004)
Beiträge zur Algebra und Geometrie
Similarity:
Riskin, Adrian (2007)
Bulletin of the Malaysian Mathematical Sciences Society. Second Series
Similarity:
Badent, Melanie, Brandes, Ulrik, Cornelsen, Sabine (2011)
Journal of Graph Algorithms and Applications
Similarity:
Hofmeister, M. (1992)
Séminaire Lotharingien de Combinatoire [electronic only]
Similarity:
Oleg N. German (2007)
Journal de Théorie des Nombres de Bordeaux
Similarity:
A Klein polyhedron is defined as the convex hull of nonzero lattice points inside an orthant of . It generalizes the concept of continued fraction. In this paper facets and edge stars of vertices of a Klein polyhedron are considered as multidimensional analogs of partial quotients and quantitative characteristics of these “partial quotients”, so called determinants, are defined. It is proved that the facets of all the Klein polyhedra generated by a lattice have uniformly bounded...