Periodic solutions of x" + f(μ, x) = 0
G. J. Butler, H. I. Freedman (1979)
Annales Polonici Mathematici
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
G. J. Butler, H. I. Freedman (1979)
Annales Polonici Mathematici
Similarity:
G. J. Butler (1974)
Annales Polonici Mathematici
Similarity:
J. Ligęza (1977)
Annales Polonici Mathematici
Similarity:
Stanisław Sędziwy (1972)
Annales Polonici Mathematici
Similarity:
Fabio Zanolin (1981)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Carvalho, L.A.V., Ladeira, L.A.C., Martelli, M. (2000)
Portugaliae Mathematica
Similarity:
Lian, Jin-Guo (2009)
Applied Mathematics E-Notes [electronic only]
Similarity:
Ma, Ruyun, Chen, Tianlan, Lu, Yanqiong (2010)
Discrete Dynamics in Nature and Society
Similarity:
Bahman Mehri (1977)
Archivum Mathematicum
Similarity:
Zhanyong Li, Qihuai Liu, Kelei Zhang (2020)
Applications of Mathematics
Similarity:
In many engineering problems, when studying the existence of periodic solutions to a nonlinear system with a small parameter via the local averaging theorem, it is necessary to verify some properties of the fundamental solution matrix to the corresponding linearized system along the periodic solution of the unperturbed system. But sometimes, it is difficult or it requires a lot of calculations. In this paper, a few simple and effective methods are introduced to investigate the existence...
Makay, Géza (2000)
Electronic Journal of Qualitative Theory of Differential Equations [electronic only]
Similarity: