The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On degree sequences of graphs with given cyclomatic number.”

Structural Properties of Recursively Partitionable Graphs with Connectivity 2

Olivier Baudon, Julien Bensmail, Florent Foucaud, Monika Pilśniak (2017)

Discussiones Mathematicae Graph Theory

Similarity:

A connected graph G is said to be arbitrarily partitionable (AP for short) if for every partition (n1, . . . , np) of |V (G)| there exists a partition (V1, . . . , Vp) of V (G) such that each Vi induces a connected subgraph of G on ni vertices. Some stronger versions of this property were introduced, namely the ones of being online arbitrarily partitionable and recursively arbitrarily partitionable (OL-AP and R-AP for short, respectively), in which the subgraphs induced by a partition...

Degree Sequences of Monocore Graphs

Allan Bickle (2014)

Discussiones Mathematicae Graph Theory

Similarity:

A k-monocore graph is a graph which has its minimum degree and degeneracy both equal to k. Integer sequences that can be the degree sequence of some k-monocore graph are characterized as follows. A nonincreasing sequence of integers d0, . . . , dn is the degree sequence of some k-monocore graph G, 0 ≤ k ≤ n − 1, if and only if k ≤ di ≤ min {n − 1, k + n − i} and ⨊di = 2m, where m satisfies [...] ≤ m ≤ k ・ n − [...] .