A Logic for Reasoning About Qualitative Probability
Angelina Ilić-Stepić (2010)
Publications de l'Institut Mathématique
Similarity:
Angelina Ilić-Stepić (2010)
Publications de l'Institut Mathématique
Similarity:
Dragan Doder, Bojan Marinković, Petar Maksimović, Aleksandar Perović (2010)
Publications de l'Institut Mathématique
Similarity:
Zoran Ognjanović, Miodrag Rašković, Zoran Marković (2009)
Zbornik Radova
Similarity:
Vladimir Ristić (2010)
Kragujevac Journal of Mathematics
Similarity:
Ognjanović, Zoran, Marković, Zoran, Rašković, Miodrag (2005)
Publications de l'Institut Mathématique. Nouvelle Série
Similarity:
Vladimir Ristić (2009)
Kragujevac Journal of Mathematics
Similarity:
Ionascu, E.J., Stancu, A.A. (2010)
Acta Mathematica Universitatis Comenianae. New Series
Similarity:
Vladimir Ristić (2009)
Kragujevac Journal of Mathematics
Similarity:
Aggoun, L., Benkherouf, L., Benmerzouga, A. (2003)
Journal of Applied Mathematics and Decision Sciences
Similarity:
A. Simon (1993)
Banach Center Publications
Similarity:
Gessel, Ira M. (2005)
Séminaire Lotharingien de Combinatoire [electronic only]
Similarity:
Jozefina Petrovicová, Riecan Beloslav (2005)
Mathware and Soft Computing
Similarity:
A probability theory on IFS-events has been constructed in [3], and axiomatically characterized in [4]. Here using a general system of axioms it is shown that any probability on IFS-events can be decomposed onto two probabilities on a Lukasiewicz tribe, hence some known results from [5], [6] can be used also for IFS-sets. As an application of the approach a variant of Central limit theorem is presented.