The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On Curvature Characterizations of Some Hypersurfaces in Spaces of Constant Curvature”

On some generalized Einstein metric conditions on hypersurfaces in semi-Riemannian space forms

Ryszard Deszcz, Małgorzata Głogowska, Marian Hotloś, Leopold Verstraelen (2003)

Colloquium Mathematicae

Similarity:

Solutions of the P. J. Ryan problem as well as investigations of curvature properties of Cartan hypersurfaces and Ricci-pseudosymmetric hypersurfaces lead to curvature identities holding on every hypersurface M isometrically immersed in a semi-Riemannian space form. These identities, under some assumptions, give rises to new generalized Einstein metric conditions on M. We investigate hypersurfaces satisfying such curvature conditions.

On semi-Riemannian manifolds satisfying some conformally invariant curvature condition

Ryszard Deszcz, Małgorzata Głogowska, Hideko Hashiguchi, Marian Hotloś, Makoto Yawata (2013)

Colloquium Mathematicae

Similarity:

We investigate semi-Riemannian manifolds with pseudosymmetric Weyl curvature tensor satisfying some additional condition imposed on their curvature tensor. Among other things we prove that the so-called Roter type equation holds on such manifolds. We present applications of our results to hypersurfaces in semi-Riemannian space forms, as well as to 4-dimensional warped products.

Quasi-Einstein hypersurfaces in semi-Riemannian space forms

Ryszard Deszcz, Marian Hotloś, Zerrin Sentürk (2001)

Colloquium Mathematicae

Similarity:

We investigate curvature properties of hypersurfaces of a semi-Riemannian space form satisfying R·C = LQ(S,C), which is a curvature condition of pseudosymmetry type. We prove that under some additional assumptions the ambient space of such hypersurfaces must be semi-Euclidean and that they are quasi-Einstein Ricci-semisymmetric manifolds.

On some class of hypersurfaces with three distinct principal curvatures

Katarzyna Sawicz (2005)

Banach Center Publications

Similarity:

We investigate hypersurfaces M in spaces of constant curvature with some special minimal polynomial of the second fundamental tensor H of third degree. We present a curvature characterization of pseudosymmetry type for such hypersurfaces. We also prove that if such a hypersurface is a manifold with pseudosymmetric Weyl tensor then it must be pseudosymmetric.

On Riemann and Weyl Compatible Tensors

Ryszard Deszcz, Małgorzata Głogowska, Jan Jełowicki, Miroslava Petrović-Torgašev, Georges Zafindratafa (2013)

Publications de l'Institut Mathématique

Similarity: