Curvature properties of Cartan hypersurfaces

Ryszard Deszcz; Sahnur Yaprak

Colloquium Mathematicae (1994)

  • Volume: 67, Issue: 1, page 91-98
  • ISSN: 0010-1354

How to cite

top

Deszcz, Ryszard, and Yaprak, Sahnur. "Curvature properties of Cartan hypersurfaces." Colloquium Mathematicae 67.1 (1994): 91-98. <http://eudml.org/doc/210266>.

@article{Deszcz1994,
author = {Deszcz, Ryszard, Yaprak, Sahnur},
journal = {Colloquium Mathematicae},
keywords = {semisymmetric Riemannian spaces; pseudosymmetry; Ricci-pseudosymmetry; Cartan hypersurfaces},
language = {eng},
number = {1},
pages = {91-98},
title = {Curvature properties of Cartan hypersurfaces},
url = {http://eudml.org/doc/210266},
volume = {67},
year = {1994},
}

TY - JOUR
AU - Deszcz, Ryszard
AU - Yaprak, Sahnur
TI - Curvature properties of Cartan hypersurfaces
JO - Colloquium Mathematicae
PY - 1994
VL - 67
IS - 1
SP - 91
EP - 98
LA - eng
KW - semisymmetric Riemannian spaces; pseudosymmetry; Ricci-pseudosymmetry; Cartan hypersurfaces
UR - http://eudml.org/doc/210266
ER -

References

top
  1. [1] A. Adamów and R. Deszcz, On totally umbilical submanifolds of some class of Riemannian manifolds, Demonstratio Math. 16 (1983), 39-59. Zbl0534.53019
  2. [2] E. Cartan, Familles de surfaces isoparamétriques dans les espaces à courbure constante, Ann. Mat. Pura Appl. 17 (1938), 177-191. Zbl64.1361.02
  3. [3] E. Cartan, Sur des familles remarquables d'hypersurfaces isoparamétriques dans les espaces sphériques, Math. Z. 45 (1939), 335-367. Zbl0021.15603
  4. [4] T. E. Cecil and P. J. Ryan, Tight and Taut Immersions of Manifolds, Pitman, Boston, 1985. Zbl0596.53002
  5. [5] F. Defever and R. Deszcz, On semi-Riemannian manifolds satisfying the condition R · R = Q(S,R), in: Geometry and Topology of Submanifolds, III, Leeds, May 1990, World Sci., Singapore, 1991, 108-130. 
  6. [6] F. Defever and R. Deszcz, A note on geodesic mappings of pseudosymmetric Riemannian manifolds, Colloq. Math. 62 (1991), 313-319. Zbl0810.53008
  7. [7] F. Defever and R. Deszcz, On warped product manifolds satisfying a certain curvature condition, Atti Accad. Peloritana Pericolanti Cl. Sci. Fis. Mat. Natur. 69 (1991), 213-236. Zbl0780.53017
  8. [8] F. Defever and R. Deszcz, On Riemannian manifolds satisfying a certain curvature condition imposed on the Weyl curvature tensor, Acta Univ. Palack., in print. Zbl0796.53016
  9. [9] F. Defever, R. Deszcz and M. Prvanović, On warped product manifolds satisfying some curvature condition of pseudosymmetry type, to appear. Zbl0923.53018
  10. [10] F. Defever, R. Deszcz, L. Verstraelen and S. Yaprak, Curvature properties of hypersurfaces of pseudosymmetry type, in: Geometry and Topology of Submanifolds, V, Leuven/Brussels, July 1992, World Sci., Singapore, 1993, 132-146. Zbl0839.53039
  11. [11] J. Deprez, R. Deszcz and L. Verstraelen, Pseudosymmetry curvature conditions on hypersurfaces of Euclidean spaces and on Kählerian manifolds, Ann. Fac. Sci. Toulouse 9 (1988), 183-192. Zbl0668.53010
  12. [12] J. Deprez, R. Deszcz and L. Verstraelen, Examples of pseudosymmetric conformally flat warped products, Chinese J. Math. 17 (1989), 51-65. Zbl0678.53022
  13. [13] R. Deszcz, On Ricci-pseudosymmetric warped products, Demonstratio Math. 22 (1989), 1053-1065. Zbl0707.53020
  14. [14] R. Deszcz, On conformally flat Riemannian manifold satisfying certain curvature conditions, Tensor (N.S.) 49 (1990), 134-145. Zbl0742.53006
  15. [15] R. Deszcz, On four-dimensional Riemannian warped product manifolds satisfying certain pseudo-symmetry curvature conditions, Colloq. Math. 62 (1991), 103-120. Zbl0738.53008
  16. [16] R. Deszcz, Curvature properties of a certain compact pseudosymmetric manifold, ibid. 65 (1993), 139-147. Zbl0823.53030
  17. [17] R. Deszcz, Pseudosymmetric hypersurfaces in manifolds of constant curvature, to appear. Zbl0938.53024
  18. [18] R. Deszcz, On pseudosymmetric spaces, Bull. Soc. Math. Belg. Sér. A 44 (1992), 1-34. Zbl0808.53012
  19. [19] R. Deszcz and W. Grycak, On some class of warped product manifolds, Bull. Inst. Math. Acad. Sinica 15 (1987), 311-322. Zbl0633.53031
  20. [20] R. Deszcz and W. Grycak, On certain curvature conditions on Riemannian manifolds, Colloq. Math. 58 (1990), 259-268. Zbl0707.53019
  21. [21] R. Deszcz and M. Hotloś, On geodesic mappings in pseudosymmetric manifolds, Bull. Inst. Math. Acad. Sinica 16 (1988), 251-262. Zbl0668.53007
  22. [22] R. Deszcz and M. Hotloś, Remarks on Riemannian manifolds satisfying a certain curvature condition imposed on the Ricci tensor, Prace Nauk. Polit. Szczec. 11 (1989), 23-34. Zbl0744.53008
  23. [23] R. Deszcz and L. Verstraelen, Hypersurfaces of semi-Riemannian conformally flat manifolds, in: Geometry and Topology of Submanifolds, III, Leeds, May 1990, World Sci., Singapore, 1991, 131-147. 
  24. [24] R. Deszcz, L. Verstraelen and S. Yaprak, Warped products realizing a certain condition of pseudosymmetry type imposed on the Weyl curvature tensor, Chinese J. Math., in print. Zbl0817.53008
  25. [25] R. Deszcz, L. Verstraelen and S. Yaprak, Pseudosymmetric hypersurfaces in 4-dimensional spaces of constant curvature, Bull. Inst. Math. Acad. Sinica, in print. Zbl0811.53014
  26. [26] T. Otsuki, Minimal hypersurfaces in a Riemannian manifold of constant curvature, Amer. J. Math. 92 (1970), 145-173. Zbl0196.25102
  27. [27] F. Tricerri and L. Vanhecke, Cartan hypersurfaces and reflections, Nihonkai Math. J. 1 (1990), 203-208. Zbl0956.53505
  28. [28] Z. I. Szabó, Structure theorems on Riemannian spaces satisfying R(X,Y)·R = 0. I. The local version, J. Differential Geom., 17 (1982), 531-582. Zbl0508.53025

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.