The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Baire's Space of Permutations of n and Rearrangements of Series”

The Borel structure of some non-Lebesgue sets

Don L. Hancock (2004)

Colloquium Mathematicae

Similarity:

For a given function in some classes related to real derivatives, we examine the structure of the set of points which are not Lebesgue points. In particular, we prove that for a summable approximately continuous function, the non-Lebesgue set is a nowhere dense nullset of at most Borel class 4.

Borel extensions of Baire measures in ZFC

Menachem Kojman, Henryk Michalewski (2011)

Fundamenta Mathematicae

Similarity:

We prove: 1) Every Baire measure on the Kojman-Shelah Dowker space admits a Borel extension. 2) If the continuum is not real-valued-measurable then every Baire measure on M. E. Rudin's Dowker space admits a Borel extension. Consequently, Balogh's space remains the only candidate to be a ZFC counterexample to the measure extension problem of the three presently known ZFC Dowker spaces.

Baire spaces

R. C. Haworth, R. A McCoy

Similarity:

CONTENTSIntroduction............................................................................................................ 5I. Basic properties of Baire spaces................................................................... 61. Nowhere dense sets............................................................................................... 62. First and second category sets............................................................................. 83. Baire spaces................................................................................................................