On Borel, Baire and Lebesgue sets.
A. Abian (1979)
Publications de l'Institut Mathématique [Elektronische Ressource]
Similarity:
A. Abian (1979)
Publications de l'Institut Mathématique [Elektronische Ressource]
Similarity:
Don L. Hancock (2004)
Colloquium Mathematicae
Similarity:
For a given function in some classes related to real derivatives, we examine the structure of the set of points which are not Lebesgue points. In particular, we prove that for a summable approximately continuous function, the non-Lebesgue set is a nowhere dense nullset of at most Borel class 4.
P. Dierolf, S. Dierolf, L. Drewnowski (1978)
Colloquium Mathematicae
Similarity:
Hejduk, Jacek (2015-11-10T11:42:31Z)
Acta Universitatis Lodziensis. Folia Mathematica
Similarity:
J. Mioduszewski (1971)
Colloquium Mathematicae
Similarity:
E. Torrance (1938)
Fundamenta Mathematicae
Similarity:
Menachem Kojman, Henryk Michalewski (2011)
Fundamenta Mathematicae
Similarity:
We prove: 1) Every Baire measure on the Kojman-Shelah Dowker space admits a Borel extension. 2) If the continuum is not real-valued-measurable then every Baire measure on M. E. Rudin's Dowker space admits a Borel extension. Consequently, Balogh's space remains the only candidate to be a ZFC counterexample to the measure extension problem of the three presently known ZFC Dowker spaces.
R. C. Haworth, R. A McCoy
Similarity:
CONTENTSIntroduction............................................................................................................ 5I. Basic properties of Baire spaces................................................................... 61. Nowhere dense sets............................................................................................... 62. First and second category sets............................................................................. 83. Baire spaces................................................................................................................
Zdena Riečanová (1974)
Matematický časopis
Similarity:
Miller, Harry I. (1981)
Publications de l'Institut Mathématique. Nouvelle Série
Similarity: