On Borel, Baire and Lebesgue sets.
A. Abian (1979)
Publications de l'Institut Mathématique [Elektronische Ressource]
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
A. Abian (1979)
Publications de l'Institut Mathématique [Elektronische Ressource]
Similarity:
Don L. Hancock (2004)
Colloquium Mathematicae
Similarity:
For a given function in some classes related to real derivatives, we examine the structure of the set of points which are not Lebesgue points. In particular, we prove that for a summable approximately continuous function, the non-Lebesgue set is a nowhere dense nullset of at most Borel class 4.
P. Dierolf, S. Dierolf, L. Drewnowski (1978)
Colloquium Mathematicae
Similarity:
Hejduk, Jacek (2015-11-10T11:42:31Z)
Acta Universitatis Lodziensis. Folia Mathematica
Similarity:
J. Mioduszewski (1971)
Colloquium Mathematicae
Similarity:
E. Torrance (1938)
Fundamenta Mathematicae
Similarity:
Menachem Kojman, Henryk Michalewski (2011)
Fundamenta Mathematicae
Similarity:
We prove: 1) Every Baire measure on the Kojman-Shelah Dowker space admits a Borel extension. 2) If the continuum is not real-valued-measurable then every Baire measure on M. E. Rudin's Dowker space admits a Borel extension. Consequently, Balogh's space remains the only candidate to be a ZFC counterexample to the measure extension problem of the three presently known ZFC Dowker spaces.
R. C. Haworth, R. A McCoy
Similarity:
CONTENTSIntroduction............................................................................................................ 5I. Basic properties of Baire spaces................................................................... 61. Nowhere dense sets............................................................................................... 62. First and second category sets............................................................................. 83. Baire spaces................................................................................................................
Zdena Riečanová (1974)
Matematický časopis
Similarity:
Miller, Harry I. (1981)
Publications de l'Institut Mathématique. Nouvelle Série
Similarity: