Algebraic polynomially bounded operators
W. Mlak (1974)
Annales Polonici Mathematici
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
W. Mlak (1974)
Annales Polonici Mathematici
Similarity:
J. Tervo (1989)
Annales Polonici Mathematici
Similarity:
Albrecht Böttcher, Harald Heidler (1995)
Aequationes mathematicae
Similarity:
M. Budimčević, B. Stanković (1971)
Publications de l'Institut Mathématique
Similarity:
B. Stankovic, D. Nikolic-Despotovic (1972)
Publications de l'Institut Mathématique [Elektronische Ressource]
Similarity:
Stochel, Jan, Szafraniec, F.H. (1994)
Portugaliae Mathematica
Similarity:
Toka Diagana (2003)
Rendiconti del Seminario Matematico della Università di Padova
Similarity:
Ludwig Bröcker (2005)
Annales Polonici Mathematici
Similarity:
Let R be a real closed field with a real valuation v. A ℤ-valued semialgebraic function on Rⁿ is called algebraic if it can be written as the sign of a symmetric bilinear form over R[X₁,. .., Xₙ]. We show that the reduction of such a function with respect to v is again algebraic on the residue field. This implies a corresponding result for limits of algebraic functions in definable families.
Galakhov, E. (1997)
Memoirs on Differential Equations and Mathematical Physics
Similarity:
Ryotaro Sato (1976)
Colloquium Mathematicae
Similarity:
Ryotaro Sato (1976)
Colloquium Mathematicae
Similarity:
Beatriz Margolis (1972)
Annales Polonici Mathematici
Similarity:
J. Garza, M. I. M. Ishak, C. Pinner (2010)
Acta Arithmetica
Similarity:
J. Wójcik (1975)
Acta Arithmetica
Similarity: