Correction to my paper "On automorphism groups of boolean algebras"
L. Varecza (1977)
Matematički Vesnik
Similarity:
L. Varecza (1977)
Matematički Vesnik
Similarity:
J.Donald Monk (1975)
Mathematische Annalen
Similarity:
Robert Lagrange (1974)
Colloquium Mathematicae
Similarity:
A. Bella, A. Dow, K. P. Hart, M. Hrusak, J. van Mill, P. Ursino (2002)
Fundamenta Mathematicae
Similarity:
Given a Boolean algebra 𝔹 and an embedding e:𝔹 → 𝓟(ℕ)/fin we consider the possibility of extending each or some automorphism of 𝔹 to the whole 𝓟(ℕ)/fin. Among other things, we show, assuming CH, that for a wide class of Boolean algebras there are embeddings for which no non-trivial automorphism can be extended.
Matatyahu Rubin (1980)
Archiv für mathematische Logik und Grundlagenforschung
Similarity:
Brian Wynne (2008)
Fundamenta Mathematicae
Similarity:
Two Boolean algebras are elementarily equivalent if and only if they satisfy the same first-order statements in the language of Boolean algebras. We prove that every Boolean algebra is elementarily equivalent to the algebra of clopen subsets of a normal P-space.
Janusz Czelakowski (1981)
Colloquium Mathematicae
Similarity:
Martin Gavalec (1981)
Colloquium Mathematicae
Similarity:
Mijajlović, Žarko (1987)
Publications de l'Institut Mathématique. Nouvelle Série
Similarity:
Marek Balcerzak, Artur Bartoszewicz, Piotr Koszmider (2004)
Colloquium Mathematicae
Similarity:
We construct algebras of sets which are not MB-representable. The existence of such algebras was previously known under additional set-theoretic assumptions. On the other hand, we prove that every Boolean algebra is isomorphic to an MB-representable algebra of sets.
Janusz Czelakowski (1978)
Colloquium Mathematicae
Similarity:
Žarko Mijajlović (1979)
Publications de l'Institut Mathématique
Similarity:
Ivan Chajda, Günther Eigenthaler (2009)
Discussiones Mathematicae - General Algebra and Applications
Similarity:
De Morgan quasirings are connected to De Morgan algebras in the same way as Boolean rings are connected to Boolean algebras. The aim of the paper is to establish a common axiom system for both De Morgan quasirings and De Morgan algebras and to show how an interval of a De Morgan algebra (or De Morgan quasiring) can be viewed as a De Morgan algebra (or De Morgan quasiring, respectively).
R. Balbes, Ph. Dwinger (1971)
Colloquium Mathematicae
Similarity:
Alexander Abian (1974)
Colloquium Mathematicae
Similarity: