Displaying similar documents to “Lagrange multipliers method and quadratic programming in Hilbert space”

Schur and operator multipliers

Ivan G. Todorov, Lyudmila Turowska (2010)

Banach Center Publications

Similarity:

The present article is a survey of known results on Schur and operator multipliers. It starts with the classical description of Schur multipliers due to Grothendieck, followed by a discussion of measurable Schur multipliers and a generalisation of Grothendieck's Theorem due to Peller. Thereafter, a non-commutative version of Schur multipliers, called operator multipliers and introduced by Kissin and Schulman, is discussed, and a characterisation extending the description in the commutative...

Multipliers of sequence spaces

Raymond Cheng, Javad Mashreghi, William T. Ross (2017)

Concrete Operators

Similarity:

This paper is selective survey on the space lAp and its multipliers. It also includes some connections of multipliers to Birkhoff-James orthogonality

Multipliers on a Hilbert Space of Functions on R

Petkova, Violeta (2009)

Serdica Mathematical Journal

Similarity:

2000 Mathematics Subject Classification: 42A45. For a Hilbert space H ⊂ L1loc(R) of functions on R we obtain a representation theorem for the multipliers M commuting with the shift operator S. This generalizes the classical result for multipliers in L2(R) as well as our previous result for multipliers in weighted space L2ω(R). Moreover, we obtain a description of the spectrum of S.

Distinctness of spaces of Lorentz-Zygmund multipliers

Kathryn E. Hare, Parasar Mohanty (2005)

Studia Mathematica

Similarity:

We study the spaces of Lorentz-Zygmund multipliers on compact abelian groups and show that many of these spaces are distinct. This generalizes earlier work on the non-equality of spaces of Lorentz multipliers.

A quasi-dual Lagrange multiplier space for serendipity mortar finite elements in 3D

Bishnu P. Lamichhane, Barbara I. Wohlmuth (2010)

ESAIM: Mathematical Modelling and Numerical Analysis

Similarity:

Domain decomposition techniques provide a flexible tool for the numerical approximation of partial differential equations. Here, we consider mortar techniques for quadratic finite elements in 3D with different Lagrange multiplier spaces. In particular, we focus on Lagrange multiplier spaces which yield optimal discretization schemes and a locally supported basis for the associated constrained mortar spaces in case of hexahedral triangulations. As a result, standard efficient iterative...

Penalties, Lagrange multipliers and Nitsche mortaring

Christian Grossmann (2010)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Similarity:

Penalty methods, augmented Lagrangian methods and Nitsche mortaring are well known numerical methods among the specialists in the related areas optimization and finite elements, respectively, but common aspects are rarely available. The aim of the present paper is to describe these methods from a unifying optimization perspective and to highlight some common features of them.

Zero or near-to-zero Lagrange multipliers in linearly constrained nonlinear programming.

Laureano F. Escudero (1982)

Qüestiió

Similarity:

We discuss in this work the using of Lagrange multipliers estimates in linearly constrained nonlinear programming algorithms and the implication of zero or near-to-zero Lagrange multipliers. Some methods for estimating the tendency of the multipliers are proposed in the context of a given algorithm.