A classification of H-closed extensions
A. Błaszczyk, U. Lorek (1978)
Colloquium Mathematicae
Similarity:
A. Błaszczyk, U. Lorek (1978)
Colloquium Mathematicae
Similarity:
Paweł Szeptycki (1975)
Studia Mathematica
Similarity:
D. W. Hajek (1986)
Matematički Vesnik
Similarity:
H. A. Antosiewicz, A. Cellina (1977)
Annales Polonici Mathematici
Similarity:
Aarts J. M. (1971)
Colloquium Mathematicum
Similarity:
M. R. Koushesh
Similarity:
Let X be a space. A space Y is called an extension of X if Y contains X as a dense subspace. For an extension Y of X the subspace Y∖X of Y is called the remainder of Y. Two extensions of X are said to be equivalent if there is a homeomorphism between them which fixes X pointwise. For two (equivalence classes of) extensions Y and Y' of X let Y ≤ Y' if there is a continuous mapping of Y' into Y which fixes X pointwise. Let 𝓟 be a topological property. An extension Y of X is called a 𝓟-extension...
L. Rudolf (1972)
Fundamenta Mathematicae
Similarity:
Eggert Briem (1981)
Mathematische Zeitschrift
Similarity:
Otto Endler (1975)
Manuscripta mathematica
Similarity:
Paul Monsky (1987)
Mathematische Zeitschrift
Similarity:
Wojciech Guzicki
Similarity:
CONTENTS0. Introduction and terminology..............................................................51. Quantifiers and elementary extensions..............................................82. Elementary extensions of countable models of set theory................153. Interpretations of set theory in extensions of A₂...............................214. Definable quantifiers in models of A₂...............................................325. Elementary generic extensions........................................................40References..........................................................................................50 ...
Marino Gran, George Janelidze, Manuela Sobral (2019)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
We develop a theory of split extensions of unitary magmas, which includes defining such extensions and describing them via suitably defined semidirect product, yielding an equivalence between the categories of split extensions and of (suitably defined) actions of unitary magmas on unitary magmas. The class of split extensions is pullback stable but not closed under composition. We introduce two subclasses of it that have both of these properties.
A. Torgašev (1976)
Matematički Vesnik
Similarity: