Split extensions and semidirect products of unitary magmas

Marino Gran; George Janelidze; Manuela Sobral

Commentationes Mathematicae Universitatis Carolinae (2019)

  • Volume: 60, Issue: 4, page 509-527
  • ISSN: 0010-2628

Abstract

top
We develop a theory of split extensions of unitary magmas, which includes defining such extensions and describing them via suitably defined semidirect product, yielding an equivalence between the categories of split extensions and of (suitably defined) actions of unitary magmas on unitary magmas. The class of split extensions is pullback stable but not closed under composition. We introduce two subclasses of it that have both of these properties.

How to cite

top

Gran, Marino, Janelidze, George, and Sobral, Manuela. "Split extensions and semidirect products of unitary magmas." Commentationes Mathematicae Universitatis Carolinae 60.4 (2019): 509-527. <http://eudml.org/doc/295072>.

@article{Gran2019,
abstract = {We develop a theory of split extensions of unitary magmas, which includes defining such extensions and describing them via suitably defined semidirect product, yielding an equivalence between the categories of split extensions and of (suitably defined) actions of unitary magmas on unitary magmas. The class of split extensions is pullback stable but not closed under composition. We introduce two subclasses of it that have both of these properties.},
author = {Gran, Marino, Janelidze, George, Sobral, Manuela},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {unitary magma; split extension; firm split extension; semidirect product},
language = {eng},
number = {4},
pages = {509-527},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Split extensions and semidirect products of unitary magmas},
url = {http://eudml.org/doc/295072},
volume = {60},
year = {2019},
}

TY - JOUR
AU - Gran, Marino
AU - Janelidze, George
AU - Sobral, Manuela
TI - Split extensions and semidirect products of unitary magmas
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2019
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 60
IS - 4
SP - 509
EP - 527
AB - We develop a theory of split extensions of unitary magmas, which includes defining such extensions and describing them via suitably defined semidirect product, yielding an equivalence between the categories of split extensions and of (suitably defined) actions of unitary magmas on unitary magmas. The class of split extensions is pullback stable but not closed under composition. We introduce two subclasses of it that have both of these properties.
LA - eng
KW - unitary magma; split extension; firm split extension; semidirect product
UR - http://eudml.org/doc/295072
ER -

References

top
  1. Borceux F., Bourn D., Mal'cev, Protomodular, Homological and Semi-abelian Categories, Mathematics and Its Applications, 566, Kluwer Academic Publishers, Dordrecht, 2004. MR2044291
  2. Borceux F., Janelidze G., Kelly G. M., Internal object actions, Comment. Math. Univ. Carolin. 46 (2005), no. 2, 235–255. Zbl1121.18004MR2176890
  3. Bourn D., 10.1007/BFb0084212, Category Theory, Como, 1990, Lecture Notes in Math., 1488, Springer, Berlin, 1991, pages 43–62. MR1173004DOI10.1007/BFb0084212
  4. Bourn D., Janelidze G., Protomodularity, descent, and semidirect products, Theory Appl. Categ. 4 (1998), no. 2, 37–46. MR1615341
  5. Bourn D., Martins-Ferreira N., Montoli A., Sobral M., Schreier Split Epimorphisms in Monoids and in Semirings, Textos de Matemática, Série B, 45, Universidade de Coimbra, Departamento de Matemática, Coimbra, 2013. MR3157484
  6. Bourn D., Martins-Ferreira N., Montoli A., Sobral M., Monoids and pointed S-protomodular categories, Homology Homotopy Appl. 18 (2016), no. 1, 151–172. MR3485342
  7. Cigoli A., Mantovani S., Metere G., 10.1007/s10485-013-9348-1, Appl. Categ. Structures 22 (2014), no. 5–6, 931–960. MR3275283DOI10.1007/s10485-013-9348-1
  8. Janelidze G., Márki L., Tholen W., 10.1016/S0022-4049(01)00103-7, J. Pure Appl. Algebra 168 (2002), no. 2–3, 367–386. Zbl0993.18008MR1887164DOI10.1016/S0022-4049(01)00103-7
  9. Mac Lane S., Categories for the Working Mathematician, Graduate Texts in Mathematics, 5, Springer, New York, 1998. Zbl0906.18001MR1712872
  10. Martins-Ferreira N., Montoli A., 10.1007/s10485-015-9411-1, Appl. Categ. Structures 25 (2017), no. 1, 59–75. MR3606494DOI10.1007/s10485-015-9411-1
  11. Martins-Ferreira N., Montoli A., Sobral M., 10.1016/j.jpaa.2012.06.022, J. Pure Appl. Algebra 217 (2013), no. 2, 334–347. MR2969256DOI10.1016/j.jpaa.2012.06.022
  12. Martins-Ferreira N., Montoli A., Sobral M., 10.1007/s00233-018-9962-1, Semigroup Forum 97 (2018), no. 2, 325–352. MR3852777DOI10.1007/s00233-018-9962-1
  13. Orzech G., 10.1016/0022-4049(72)90008-4, J. Pure Appl. Algebra 2 (1972), 287–314. MR0323859DOI10.1016/0022-4049(72)90008-4
  14. Patchkoria A., 10.1023/B:GEOR.0000008133.94825.60, Georgian Math. J. 5 (1998), no. 6, 575–581. MR1654760DOI10.1023/B:GEOR.0000008133.94825.60
  15. Porter T., Extensions, crossed modules and internal categories in categories of groups with operations, Proc. Edinburgh Math. Soc. (2) 30 (1987), no. 3, 373–381. MR0908444
  16. Yoneda N., On E x t and exact sequences, J. Fac. Sci. Univ. Tokyo Sect. I 8 (1960), 507–576. MR0225854

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.