Split extensions and semidirect products of unitary magmas
Marino Gran; George Janelidze; Manuela Sobral
Commentationes Mathematicae Universitatis Carolinae (2019)
- Volume: 60, Issue: 4, page 509-527
- ISSN: 0010-2628
Access Full Article
topAbstract
topHow to cite
topGran, Marino, Janelidze, George, and Sobral, Manuela. "Split extensions and semidirect products of unitary magmas." Commentationes Mathematicae Universitatis Carolinae 60.4 (2019): 509-527. <http://eudml.org/doc/295072>.
@article{Gran2019,
abstract = {We develop a theory of split extensions of unitary magmas, which includes defining such extensions and describing them via suitably defined semidirect product, yielding an equivalence between the categories of split extensions and of (suitably defined) actions of unitary magmas on unitary magmas. The class of split extensions is pullback stable but not closed under composition. We introduce two subclasses of it that have both of these properties.},
author = {Gran, Marino, Janelidze, George, Sobral, Manuela},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {unitary magma; split extension; firm split extension; semidirect product},
language = {eng},
number = {4},
pages = {509-527},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Split extensions and semidirect products of unitary magmas},
url = {http://eudml.org/doc/295072},
volume = {60},
year = {2019},
}
TY - JOUR
AU - Gran, Marino
AU - Janelidze, George
AU - Sobral, Manuela
TI - Split extensions and semidirect products of unitary magmas
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 2019
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 60
IS - 4
SP - 509
EP - 527
AB - We develop a theory of split extensions of unitary magmas, which includes defining such extensions and describing them via suitably defined semidirect product, yielding an equivalence between the categories of split extensions and of (suitably defined) actions of unitary magmas on unitary magmas. The class of split extensions is pullback stable but not closed under composition. We introduce two subclasses of it that have both of these properties.
LA - eng
KW - unitary magma; split extension; firm split extension; semidirect product
UR - http://eudml.org/doc/295072
ER -
References
top- Borceux F., Bourn D., Mal'cev, Protomodular, Homological and Semi-abelian Categories, Mathematics and Its Applications, 566, Kluwer Academic Publishers, Dordrecht, 2004. MR2044291
- Borceux F., Janelidze G., Kelly G. M., Internal object actions, Comment. Math. Univ. Carolin. 46 (2005), no. 2, 235–255. Zbl1121.18004MR2176890
- Bourn D., 10.1007/BFb0084212, Category Theory, Como, 1990, Lecture Notes in Math., 1488, Springer, Berlin, 1991, pages 43–62. MR1173004DOI10.1007/BFb0084212
- Bourn D., Janelidze G., Protomodularity, descent, and semidirect products, Theory Appl. Categ. 4 (1998), no. 2, 37–46. MR1615341
- Bourn D., Martins-Ferreira N., Montoli A., Sobral M., Schreier Split Epimorphisms in Monoids and in Semirings, Textos de Matemática, Série B, 45, Universidade de Coimbra, Departamento de Matemática, Coimbra, 2013. MR3157484
- Bourn D., Martins-Ferreira N., Montoli A., Sobral M., Monoids and pointed S-protomodular categories, Homology Homotopy Appl. 18 (2016), no. 1, 151–172. MR3485342
- Cigoli A., Mantovani S., Metere G., 10.1007/s10485-013-9348-1, Appl. Categ. Structures 22 (2014), no. 5–6, 931–960. MR3275283DOI10.1007/s10485-013-9348-1
- Janelidze G., Márki L., Tholen W., 10.1016/S0022-4049(01)00103-7, J. Pure Appl. Algebra 168 (2002), no. 2–3, 367–386. Zbl0993.18008MR1887164DOI10.1016/S0022-4049(01)00103-7
- Mac Lane S., Categories for the Working Mathematician, Graduate Texts in Mathematics, 5, Springer, New York, 1998. Zbl0906.18001MR1712872
- Martins-Ferreira N., Montoli A., 10.1007/s10485-015-9411-1, Appl. Categ. Structures 25 (2017), no. 1, 59–75. MR3606494DOI10.1007/s10485-015-9411-1
- Martins-Ferreira N., Montoli A., Sobral M., 10.1016/j.jpaa.2012.06.022, J. Pure Appl. Algebra 217 (2013), no. 2, 334–347. MR2969256DOI10.1016/j.jpaa.2012.06.022
- Martins-Ferreira N., Montoli A., Sobral M., 10.1007/s00233-018-9962-1, Semigroup Forum 97 (2018), no. 2, 325–352. MR3852777DOI10.1007/s00233-018-9962-1
- Orzech G., 10.1016/0022-4049(72)90008-4, J. Pure Appl. Algebra 2 (1972), 287–314. MR0323859DOI10.1016/0022-4049(72)90008-4
- Patchkoria A., 10.1023/B:GEOR.0000008133.94825.60, Georgian Math. J. 5 (1998), no. 6, 575–581. MR1654760DOI10.1023/B:GEOR.0000008133.94825.60
- Porter T., Extensions, crossed modules and internal categories in categories of groups with operations, Proc. Edinburgh Math. Soc. (2) 30 (1987), no. 3, 373–381. MR0908444
- Yoneda N., On and exact sequences, J. Fac. Sci. Univ. Tokyo Sect. I 8 (1960), 507–576. MR0225854
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.