Displaying similar documents to “On Existence and Asymptotic Properties of Kneser Solutions to Singular Second Order ODE.”

On the Existence of Oscillatory Solutions of the Second Order Nonlinear ODE

Martin Rohleder (2012)

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica

Similarity:

The paper investigates the singular initial problem[4pt] ( p ( t ) u ' ( t ) ) ' + q ( t ) f ( u ( t ) ) = 0 , u ( 0 ) = u 0 , u ' ( 0 ) = 0 [4pt] on the half-line [ 0 , ) . Here u 0 [ L 0 , L ] , where L 0 , 0 and L are zeros of f , which is locally Lipschitz continuous on . Function p is continuous on [ 0 , ) , has a positive continuous derivative on ( 0 , ) and p ( 0 ) = 0 . Function q is continuous on [ 0 , ) and positive on ( 0 , ) . For specific values u 0 we prove the existence and uniqueness of damped solutions of this problem. With additional conditions for f , p and q it is shown that the problem has for each specified...

Asymptotic behaviour of nonoscillatory solutions of the fourth order differential equations

Monika Sobalová (2002)

Archivum Mathematicum

Similarity:

In the paper the fourth order nonlinear differential equation y ( 4 ) + ( q ( t ) y ' ) ' + r ( t ) f ( y ) = 0 , where q C 1 ( [ 0 , ) ) , r C 0 ( [ 0 , ) ) , f C 0 ( R ) , r 0 and f ( x ) x > 0 for x 0 is considered. We investigate the asymptotic behaviour of nonoscillatory solutions and give sufficient conditions under which all nonoscillatory solutions either are unbounded or tend to zero for t .

Nonoscillation and asymptotic behaviour for third order nonlinear differential equations

Aydın Tiryaki, A. Okay Çelebi (1998)

Czechoslovak Mathematical Journal

Similarity:

In this paper we consider the equation y ' ' ' + q ( t ) y ' α + p ( t ) h ( y ) = 0 , where p , q are real valued continuous functions on [ 0 , ) such that q ( t ) 0 , p ( t ) 0 and h ( y ) is continuous in ( - , ) such that h ( y ) y > 0 for y 0 . We obtain sufficient conditions for solutions of the considered equation to be nonoscillatory. Furthermore, the asymptotic behaviour of these nonoscillatory solutions is studied.