On the Existence of Oscillatory Solutions of the Second Order Nonlinear ODE

Martin Rohleder

Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica (2012)

  • Volume: 51, Issue: 2, page 107-127
  • ISSN: 0231-9721

Abstract

top
The paper investigates the singular initial problem[4pt] ( p ( t ) u ' ( t ) ) ' + q ( t ) f ( u ( t ) ) = 0 , u ( 0 ) = u 0 , u ' ( 0 ) = 0 [4pt] on the half-line [ 0 , ) . Here u 0 [ L 0 , L ] , where L 0 , 0 and L are zeros of f , which is locally Lipschitz continuous on . Function p is continuous on [ 0 , ) , has a positive continuous derivative on ( 0 , ) and p ( 0 ) = 0 . Function q is continuous on [ 0 , ) and positive on ( 0 , ) . For specific values u 0 we prove the existence and uniqueness of damped solutions of this problem. With additional conditions for f , p and q it is shown that the problem has for each specified u 0 a unique oscillatory solution with decreasing amplitudes.

How to cite

top

Rohleder, Martin. "On the Existence of Oscillatory Solutions of the Second Order Nonlinear ODE." Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica 51.2 (2012): 107-127. <http://eudml.org/doc/247195>.

@article{Rohleder2012,
abstract = {The paper investigates the singular initial problem[4pt] $(p(t)u^\{\prime \}(t))^\{\prime \}+q(t)f(u(t))=0,\ u(0)=u_0,\ u^\{\prime \}(0)=0$[4pt] on the half-line $[0,\infty )$. Here $u_0\in [L_0,L]$, where $L_0$, $0$ and $L$ are zeros of $f$, which is locally Lipschitz continuous on $\mathbb \{R\}$. Function $p$ is continuous on $[0,\infty )$, has a positive continuous derivative on $(0,\infty )$ and $p(0)=0$. Function $q$ is continuous on $[0,\infty )$ and positive on $(0,\infty )$. For specific values $u_0$ we prove the existence and uniqueness of damped solutions of this problem. With additional conditions for $f$, $p$ and $q$ it is shown that the problem has for each specified $u_0$ a unique oscillatory solution with decreasing amplitudes.},
author = {Rohleder, Martin},
journal = {Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica},
keywords = {singular ordinary differential equation of the second order; time singularities; unbounded domain; asymptotic properties; damped solutions; oscillatory solutions; singular ordinary differential equation; second order; time singularity; unbounded domain; asymptotic properties; oscillatory solutions},
language = {eng},
number = {2},
pages = {107-127},
publisher = {Palacký University Olomouc},
title = {On the Existence of Oscillatory Solutions of the Second Order Nonlinear ODE},
url = {http://eudml.org/doc/247195},
volume = {51},
year = {2012},
}

TY - JOUR
AU - Rohleder, Martin
TI - On the Existence of Oscillatory Solutions of the Second Order Nonlinear ODE
JO - Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
PY - 2012
PB - Palacký University Olomouc
VL - 51
IS - 2
SP - 107
EP - 127
AB - The paper investigates the singular initial problem[4pt] $(p(t)u^{\prime }(t))^{\prime }+q(t)f(u(t))=0,\ u(0)=u_0,\ u^{\prime }(0)=0$[4pt] on the half-line $[0,\infty )$. Here $u_0\in [L_0,L]$, where $L_0$, $0$ and $L$ are zeros of $f$, which is locally Lipschitz continuous on $\mathbb {R}$. Function $p$ is continuous on $[0,\infty )$, has a positive continuous derivative on $(0,\infty )$ and $p(0)=0$. Function $q$ is continuous on $[0,\infty )$ and positive on $(0,\infty )$. For specific values $u_0$ we prove the existence and uniqueness of damped solutions of this problem. With additional conditions for $f$, $p$ and $q$ it is shown that the problem has for each specified $u_0$ a unique oscillatory solution with decreasing amplitudes.
LA - eng
KW - singular ordinary differential equation of the second order; time singularities; unbounded domain; asymptotic properties; damped solutions; oscillatory solutions; singular ordinary differential equation; second order; time singularity; unbounded domain; asymptotic properties; oscillatory solutions
UR - http://eudml.org/doc/247195
ER -

References

top
  1. Bartušek, M., Cecchi, M, Došlá, Z., Marini, M., 10.1016/j.jmaa.2005.06.057, J. Math. Anal. Appl. 320 (2006), 108–120. (2006) Zbl1103.34016MR2230460DOI10.1016/j.jmaa.2005.06.057
  2. Cecchi, M, Marini, M., Villari, G., 10.1006/jdeq.1995.1079, , J. Differ. Equations 118, 2 (1995), 403–419. (1995) Zbl0827.34020MR1330834DOI10.1006/jdeq.1995.1079
  3. Gouin, H., Rotoli, G., 10.1016/S0093-6413(97)00022-0, Mech. Res. Commun. 24 (1997), 255–260. (1997) Zbl0899.76064DOI10.1016/S0093-6413(97)00022-0
  4. Ho, L. F., 10.1016/S0362-546X(98)00298-3, Nonlinear Anal. 41 (2000), 573–589. (2000) Zbl0962.34019MR1780633DOI10.1016/S0362-546X(98)00298-3
  5. Kiguradze, I. T., Chanturia, T., Asymptotic Properties of Solutions of Nonautonomous Ordinary Differential Equations, Kluver Academic, Dordrecht, 1993. (1993) Zbl0782.34002
  6. Kitzhofer, G., Koch, O., Lima, P., Weinmüller, E., 10.1007/s10915-007-9141-0, J. Sci. Comput. 32 (2007), 411–424. (2007) Zbl1179.76062MR2335787DOI10.1007/s10915-007-9141-0
  7. Kulenović, M. R. S., Ljubović, Ć., 10.1016/S0893-9659(00)00041-0, Appl. Math. Lett. 13 (2000), 107–110. (2000) MR1760271DOI10.1016/S0893-9659(00)00041-0
  8. Li, W. T., 10.1006/jmaa.1997.5680, J. Math. Anal. Appl. 217 (1998), 1–14. (1998) Zbl0893.34023MR1492076DOI10.1006/jmaa.1997.5680
  9. Lima, P. M., Chemetov, N. V., Konyukhova, N. B., Sukov, A. I., 10.1016/j.cam.2005.05.004, J. Comp. Appl. Math. 189 (2006), 260–273. (2006) Zbl1100.65066MR2202978DOI10.1016/j.cam.2005.05.004
  10. Linde, A. P., Particle Physics and Inflationary Cosmology, Harwood Academic, Chur, Switzerland, 1990. (1990) 
  11. O’Regan, D., Existence Theory for Nonlinear Ordinary Differential Equations, Kluver Academic, Dordrecht, 1997. (1997) Zbl1077.34505
  12. O’Regan, D., Theory of Singular Boundary Value Problems, World Scientific, Singapore, 1994. (1994) Zbl0807.34028MR1286741
  13. Ou, C. H., Wong, J. S. W., 10.1016/S0022-247X(02)00617-0, J. Math. Anal. Appl. 277 (2003), 670–680. (2003) Zbl1027.34039MR1961253DOI10.1016/S0022-247X(02)00617-0
  14. Rachůnková, I., Rachůnek, L., Tomeček, J., Existence of oscillatory solutions of singular nonlinear differential equations, Abstr. Appl. Anal. 2011, Article ID 408525, 1–20. Zbl1222.34035
  15. Rachůnková, I., Tomeček, J., 10.1016/j.mcm.2009.10.042, Math. Comput. Modelling 51 (2010), 658–669. (2010) Zbl1190.34029DOI10.1016/j.mcm.2009.10.042
  16. Rachůnková, I., Tomeček, J., Homoclinic solutions of singular nonautonomous second order differential equations, Bound. Value Probl. 2009, Article ID 959636, 1–21. Zbl1190.34028MR2552066
  17. Rachůnková, I., Tomeček, J., 10.1016/j.na.2009.10.011, Nonlinear Anal. 72 (2010), 2114–2118. (2010) Zbl1186.34014MR2577608DOI10.1016/j.na.2009.10.011
  18. Rachůnková, I., Tomeček, J., Stryja, J.:, Oscillatory solutions of singular equations arising in hydrodynamics, Adv. Difference Equ. Recent Trends in Differential and Difference Equations 2010, Article ID 872160, 1–13. Zbl1203.34058MR2652448
  19. Wong, J. S. W., Second-order nonlinear oscillations: a case history, In: Differential & Difference Equations and Applications, Hindawi Publishing Corporation, New York, 2006, 1131–1138. (2006) Zbl1147.34024MR2309447
  20. Wong, J. S. W., Agarwal, R. P., 10.1006/jmaa.1996.0086, J. Math. Anal. Appl. 198 (1996), 337–354. (1996) Zbl0855.34039MR1376268DOI10.1006/jmaa.1996.0086

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.