The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “The contractible subgraph of 5 -connected graphs”

Contractible edges in some k -connected graphs

Yingqiu Yang, Liang Sun (2012)

Czechoslovak Mathematical Journal

Similarity:

An edge e of a k -connected graph G is said to be k -contractible (or simply contractible) if the graph obtained from G by contracting e (i.e., deleting e and identifying its ends, finally, replacing each of the resulting pairs of double edges by a single edge) is still k -connected. In 2002, Kawarabayashi proved that for any odd integer k 5 , if G is a k -connected graph and G contains no subgraph D = K 1 + ( K 2 K 1 , 2 ) , then G has a k -contractible edge. In this paper, by generalizing this result, we prove that...

A simple proof of Whitney's Theorem on connectivity in graphs

Kewen Zhao (2011)

Mathematica Bohemica

Similarity:

In 1932 Whitney showed that a graph G with order n 3 is 2-connected if and only if any two vertices of G are connected by at least two internally-disjoint paths. The above result and its proof have been used in some Graph Theory books, such as in Bondy and Murty’s well-known Graph Theory with Applications. In this note we give a much simple proof of Whitney’s Theorem.

Connected resolvability of graphs

Varaporn Saenpholphat, Ping Zhang (2003)

Czechoslovak Mathematical Journal

Similarity:

For an ordered set W = { w 1 , w 2 , , w k } of vertices and a vertex v in a connected graph G , the representation of v with respect to W is the k -vector r ( v | W ) = ( d ( v , w 1 ) , d ( v , w 2 ) , , d ( v , w k ) ) , where d ( x , y ) represents the distance between the vertices x and y . The set W is a resolving set for G if distinct vertices of G have distinct representations with respect to W . A resolving set for G containing a minimum number of vertices is a basis for G . The dimension dim ( G ) is the number of vertices in a basis for G . A resolving set W of G is connected...