The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Minimal prime ideals of skew polynomial rings and near pseudo-valuation rings”

Conditions under which R ( x ) and R x are almost Q-rings

Hani A. Khashan, H. Al-Ezeh (2007)

Archivum Mathematicum

Similarity:

All rings considered in this paper are assumed to be commutative with identities. A ring R is a Q -ring if every ideal of R is a finite product of primary ideals. An almost Q -ring is a ring whose localization at every prime ideal is a Q -ring. In this paper, we first prove that the statements, R is an almost Z P I -ring and R [ x ] is an almost Q -ring are equivalent for any ring R . Then we prove that under the condition that every prime ideal of R ( x ) is an extension of a prime ideal of R , the ring R ...

Derivations with Engel conditions in prime and semiprime rings

Shuliang Huang (2011)

Czechoslovak Mathematical Journal

Similarity:

Let R be a prime ring, I a nonzero ideal of R , d a derivation of R and m , n fixed positive integers. (i) If ( d [ x , y ] ) m = [ x , y ] n for all x , y I , then R is commutative. (ii) If Char R 2 and [ d ( x ) , d ( y ) ] m = [ x , y ] n for all x , y I , then R is commutative. Moreover, we also examine the case when R is a semiprime ring.

Derivations with power central values on Lie ideals in prime rings

Basudeb Dhara, Rajendra K. Sharma (2008)

Czechoslovak Mathematical Journal

Similarity:

Let R be a prime ring of char R 2 with a nonzero derivation d and let U be its noncentral Lie ideal. If for some fixed integers n 1 0 , n 2 0 , n 3 0 , ( u n 1 [ d ( u ) , u ] u n 2 ) n 3 Z ( R ) for all u U , then R satisfies S 4 , the standard identity in four variables.