Derivations with power central values on Lie ideals in prime rings

Basudeb Dhara; Rajendra K. Sharma

Czechoslovak Mathematical Journal (2008)

  • Volume: 58, Issue: 1, page 147-153
  • ISSN: 0011-4642

Abstract

top
Let R be a prime ring of char R 2 with a nonzero derivation d and let U be its noncentral Lie ideal. If for some fixed integers n 1 0 , n 2 0 , n 3 0 , ( u n 1 [ d ( u ) , u ] u n 2 ) n 3 Z ( R ) for all u U , then R satisfies S 4 , the standard identity in four variables.

How to cite

top

Dhara, Basudeb, and Sharma, Rajendra K.. "Derivations with power central values on Lie ideals in prime rings." Czechoslovak Mathematical Journal 58.1 (2008): 147-153. <http://eudml.org/doc/31204>.

@article{Dhara2008,
abstract = {Let $R$ be a prime ring of char $R\ne 2$ with a nonzero derivation $d$ and let $U$ be its noncentral Lie ideal. If for some fixed integers $n_1\ge 0, n_2\ge 0, n_3\ge 0$, $( u^\{n_1\}[d(u),u]u^\{n_2\})^\{n_3\}\in Z(R)$ for all $u \in U$, then $R$ satisfies $S_4$, the standard identity in four variables.},
author = {Dhara, Basudeb, Sharma, Rajendra K.},
journal = {Czechoslovak Mathematical Journal},
keywords = {prime ring; derivation; extended centroid; martindale quotient ring; prime rings; derivations; extended centroids; Martindale quotient rings; additive mappings; noncentral Lie ideals},
language = {eng},
number = {1},
pages = {147-153},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Derivations with power central values on Lie ideals in prime rings},
url = {http://eudml.org/doc/31204},
volume = {58},
year = {2008},
}

TY - JOUR
AU - Dhara, Basudeb
AU - Sharma, Rajendra K.
TI - Derivations with power central values on Lie ideals in prime rings
JO - Czechoslovak Mathematical Journal
PY - 2008
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 58
IS - 1
SP - 147
EP - 153
AB - Let $R$ be a prime ring of char $R\ne 2$ with a nonzero derivation $d$ and let $U$ be its noncentral Lie ideal. If for some fixed integers $n_1\ge 0, n_2\ge 0, n_3\ge 0$, $( u^{n_1}[d(u),u]u^{n_2})^{n_3}\in Z(R)$ for all $u \in U$, then $R$ satisfies $S_4$, the standard identity in four variables.
LA - eng
KW - prime ring; derivation; extended centroid; martindale quotient ring; prime rings; derivations; extended centroids; Martindale quotient rings; additive mappings; noncentral Lie ideals
UR - http://eudml.org/doc/31204
ER -

References

top
  1. 10.1016/0021-8693(81)90120-4, J. Algebra 71 (1981), 259–267. (1981) MR0627439DOI10.1016/0021-8693(81)90120-4
  2. 10.2140/pjm.2000.193.269, Pacific J. Math. 193 (2000), 269–278. (2000) MR1755818DOI10.2140/pjm.2000.193.269
  3. 10.1090/S0002-9939-1988-0947646-4, Proc. Amer. Math. Soc. 103 (1988), 723–728. (1988) MR0947646DOI10.1090/S0002-9939-1988-0947646-4
  4. 10.2140/pjm.1975.60.49, Pacific J. Math. 60 (1975), 49–63. (1975) MR0382379DOI10.2140/pjm.1975.60.49
  5. PI-algebras, an Introduction, Lecture notes in Math., 441, Springer Verlag, New York, 1975. (1975) Zbl0326.16013MR0369421
  6. Structure of Rings, Amer. Math. Soc. Colloq. Pub., 37, Amer. Math. Soc., Providence, RI, 1964. (1964) MR0222106
  7. 10.1007/BF01670115, Algebra and Logic. 17 (1978), 155–168. (1978) MR0541758DOI10.1007/BF01670115
  8. 10.1090/S0002-9939-1993-1132851-9, Proc. Amer. Math. Soc. 118 (1993), 731–734. (1993) Zbl0821.16037MR1132851DOI10.1090/S0002-9939-1993-1132851-9
  9. 10.2140/pjm.1988.134.275, Pacific J. Math. 134 (1988), 275–297. (1988) Zbl0614.16028MR0961236DOI10.2140/pjm.1988.134.275
  10. 10.1016/0021-8693(69)90029-5, J. Algebra 12 (1969), 576–584. (1969) MR0238897DOI10.1016/0021-8693(69)90029-5
  11. 10.1090/S0002-9939-1957-0095863-0, Proc. Amer. Math. Soc. 8 (1957), 1093–1100. (1957) MR0095863DOI10.1090/S0002-9939-1957-0095863-0

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.