Derivations with power central values on Lie ideals in prime rings
Basudeb Dhara; Rajendra K. Sharma
Czechoslovak Mathematical Journal (2008)
- Volume: 58, Issue: 1, page 147-153
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topDhara, Basudeb, and Sharma, Rajendra K.. "Derivations with power central values on Lie ideals in prime rings." Czechoslovak Mathematical Journal 58.1 (2008): 147-153. <http://eudml.org/doc/31204>.
@article{Dhara2008,
abstract = {Let $R$ be a prime ring of char $R\ne 2$ with a nonzero derivation $d$ and let $U$ be its noncentral Lie ideal. If for some fixed integers $n_1\ge 0, n_2\ge 0, n_3\ge 0$, $( u^\{n_1\}[d(u),u]u^\{n_2\})^\{n_3\}\in Z(R)$ for all $u \in U$, then $R$ satisfies $S_4$, the standard identity in four variables.},
author = {Dhara, Basudeb, Sharma, Rajendra K.},
journal = {Czechoslovak Mathematical Journal},
keywords = {prime ring; derivation; extended centroid; martindale quotient ring; prime rings; derivations; extended centroids; Martindale quotient rings; additive mappings; noncentral Lie ideals},
language = {eng},
number = {1},
pages = {147-153},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Derivations with power central values on Lie ideals in prime rings},
url = {http://eudml.org/doc/31204},
volume = {58},
year = {2008},
}
TY - JOUR
AU - Dhara, Basudeb
AU - Sharma, Rajendra K.
TI - Derivations with power central values on Lie ideals in prime rings
JO - Czechoslovak Mathematical Journal
PY - 2008
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 58
IS - 1
SP - 147
EP - 153
AB - Let $R$ be a prime ring of char $R\ne 2$ with a nonzero derivation $d$ and let $U$ be its noncentral Lie ideal. If for some fixed integers $n_1\ge 0, n_2\ge 0, n_3\ge 0$, $( u^{n_1}[d(u),u]u^{n_2})^{n_3}\in Z(R)$ for all $u \in U$, then $R$ satisfies $S_4$, the standard identity in four variables.
LA - eng
KW - prime ring; derivation; extended centroid; martindale quotient ring; prime rings; derivations; extended centroids; Martindale quotient rings; additive mappings; noncentral Lie ideals
UR - http://eudml.org/doc/31204
ER -
References
top- 10.1016/0021-8693(81)90120-4, J. Algebra 71 (1981), 259–267. (1981) MR0627439DOI10.1016/0021-8693(81)90120-4
- 10.2140/pjm.2000.193.269, Pacific J. Math. 193 (2000), 269–278. (2000) MR1755818DOI10.2140/pjm.2000.193.269
- 10.1090/S0002-9939-1988-0947646-4, Proc. Amer. Math. Soc. 103 (1988), 723–728. (1988) MR0947646DOI10.1090/S0002-9939-1988-0947646-4
- 10.2140/pjm.1975.60.49, Pacific J. Math. 60 (1975), 49–63. (1975) MR0382379DOI10.2140/pjm.1975.60.49
- PI-algebras, an Introduction, Lecture notes in Math., 441, Springer Verlag, New York, 1975. (1975) Zbl0326.16013MR0369421
- Structure of Rings, Amer. Math. Soc. Colloq. Pub., 37, Amer. Math. Soc., Providence, RI, 1964. (1964) MR0222106
- 10.1007/BF01670115, Algebra and Logic. 17 (1978), 155–168. (1978) MR0541758DOI10.1007/BF01670115
- 10.1090/S0002-9939-1993-1132851-9, Proc. Amer. Math. Soc. 118 (1993), 731–734. (1993) Zbl0821.16037MR1132851DOI10.1090/S0002-9939-1993-1132851-9
- 10.2140/pjm.1988.134.275, Pacific J. Math. 134 (1988), 275–297. (1988) Zbl0614.16028MR0961236DOI10.2140/pjm.1988.134.275
- 10.1016/0021-8693(69)90029-5, J. Algebra 12 (1969), 576–584. (1969) MR0238897DOI10.1016/0021-8693(69)90029-5
- 10.1090/S0002-9939-1957-0095863-0, Proc. Amer. Math. Soc. 8 (1957), 1093–1100. (1957) MR0095863DOI10.1090/S0002-9939-1957-0095863-0
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.