The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Method of infinite ascent applied on - ( 2 p · A 6 ) + B 3 = C 2

Searching for Diophantine quintuples

Mihai Cipu, Tim Trudgian (2016)

Acta Arithmetica

Similarity:

We consider Diophantine quintuples a, b, c, d, e. These are sets of positive integers, the product of any two elements of which is one less than a perfect square. It is conjectured that there are no Diophantine quintuples; we improve on current estimates to show that there are at most 5 . 441 · 10 26 Diophantine quintuples.

A note on the number of S -Diophantine quadruples

Florian Luca, Volker Ziegler (2014)

Communications in Mathematics

Similarity:

Let ( a 1 , , a m ) be an m -tuple of positive, pairwise distinct integers. If for all 1 i < j m the prime divisors of a i a j + 1 come from the same fixed set S , then we call the m -tuple S -Diophantine. In this note we estimate the number of S -Diophantine quadruples in terms of | S | = r .

A note on the Diophantine equation P(z) = n! + m!

Maciej Gawron (2013)

Colloquium Mathematicae

Similarity:

We consider the Brocard-Ramanujan type Diophantine equation P(z) = n! + m!, where P is a polynomial with rational coefficients. We show that the ABC Conjecture implies that this equation has only finitely many integer solutions when d ≥ 2 and P ( z ) = a d z d + a d - 3 z d - 3 + + a x + a .