The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “On the Classification of Lorentzian Sasaki Space Forms”

Curvature properties of φ-null Osserman Lorentzian S-manifolds

Letizia Brunetti, Angelo Caldarella (2014)

Open Mathematics

Similarity:

We expound some results about the relationships between the Jacobi operators with respect to null vectors on a Lorentzian S-manifold and the Jacobi operators with respect to particular spacelike unit vectors. We study the number of the eigenvalues of such operators on Lorentzian S-manifolds satisfying the φ-null Osserman condition, under suitable assumptions on the dimension of the manifold. Then, we provide in full generality a new curvature characterization for Lorentzian S-manifolds...

On K-contact Riemannian manifolds with vanishing E-contact Bochner curvature tensor

Hiroshi Endo (1991)

Colloquium Mathematicae

Similarity:

For Sasakian manifolds, Matsumoto and Chūman [6] defined the contact Bochner curvature tensor (see also Yano [9]). Hasegawa and Nakane [4] and Ikawa and Kon [5] have studied Sasakian manifolds with vanishing contact Bochner curvature tensor. Such manifolds were studied in the theory of submanifolds by Yano ([9] and [10]). In this paper we define an extended contact Bochner curvature tensor in K-contact Riemannian manifolds and call it the E-contact Bochner curvature tensor. Then we show...