The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Remarks on Fréchet differentiability of pointwise Lipschitz, cone-monotone and quasiconvex functions”

A Note on Differentiability of Lipschitz Maps

Rafał Górak (2010)

Bulletin of the Polish Academy of Sciences. Mathematics

Similarity:

We show that every Lipschitz map defined on an open subset of the Banach space C(K), where K is a scattered compactum, with values in a Banach space with the Radon-Nikodym property, has a point of Fréchet differentiability. This is a strengthening of the result of Lindenstrauss and Preiss who proved that for countable compacta. As a consequence of the above and a result of Arvanitakis we prove that Lipschitz functions on certain function spaces are Gâteaux differentiable.

Lipschitz-quotients and the Kunen-Martin Theorem

Yves Dutrieux (2001)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We show that there is a universal control on the Szlenk index of a Lipschitz-quotient of a Banach space with countable Szlenk index. It is in particular the case when two Banach spaces are Lipschitz-homeomorphic. This provides information on the Cantor index of scattered compact sets K and L such that C ( L ) is a Lipschitz-quotient of C ( K ) (that is the case in particular when these two spaces are Lipschitz-homeomorphic). The proof requires tools of descriptive set theory.