The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Towards a geometric theory for left loops”

Multiples of left loops and vertex-transitive graphs

Eric Mwambene (2005)

Open Mathematics

Similarity:

Via representation of vertex-transitive graphs on groupoids, we show that left loops with units are factors of groups, i.e., left loops are transversals of left cosets on which it is possible to define a binary operation which allows left cancellation.

Median and quasi-median direct products of graphs

Boštjan Brešar, Pranava K. Jha, Sandi Klavžar, Blaž Zmazek (2005)

Discussiones Mathematicae Graph Theory

Similarity:

Median graphs are characterized among direct products of graphs on at least three vertices. Beside some trivial cases, it is shown that one component of G×P₃ is median if and only if G is a tree in that the distance between any two vertices of degree at least 3 is even. In addition, some partial results considering median graphs of the form G×K₂ are proved, and it is shown that the only nonbipartite quasi-median direct product is K₃×K₃.

The Cayley graph and the growth of Steiner loops

P. Plaumann, L. Sabinina, I. Stuhl (2014)

Commentationes Mathematicae Universitatis Carolinae

Similarity:

We study properties of Steiner loops which are of fundamental importance to develop a combinatorial theory of loops along the lines given by Combinatorial Group Theory. In a summary we describe our findings.