Classes of graphs definable by graph algebra identities or quasi-identities

Reinhard Pöschel; Walter Wessel

Commentationes Mathematicae Universitatis Carolinae (1987)

  • Volume: 028, Issue: 3, page 581-592
  • ISSN: 0010-2628

How to cite

top

Pöschel, Reinhard, and Wessel, Walter. "Classes of graphs definable by graph algebra identities or quasi-identities." Commentationes Mathematicae Universitatis Carolinae 028.3 (1987): 581-592. <http://eudml.org/doc/17572>.

@article{Pöschel1987,
author = {Pöschel, Reinhard, Wessel, Walter},
journal = {Commentationes Mathematicae Universitatis Carolinae},
keywords = {Graph algebras; graph quasi-varieties; graph varieties; quasi-identities; homogeneous subproducts},
language = {eng},
number = {3},
pages = {581-592},
publisher = {Charles University in Prague, Faculty of Mathematics and Physics},
title = {Classes of graphs definable by graph algebra identities or quasi-identities},
url = {http://eudml.org/doc/17572},
volume = {028},
year = {1987},
}

TY - JOUR
AU - Pöschel, Reinhard
AU - Wessel, Walter
TI - Classes of graphs definable by graph algebra identities or quasi-identities
JO - Commentationes Mathematicae Universitatis Carolinae
PY - 1987
PB - Charles University in Prague, Faculty of Mathematics and Physics
VL - 028
IS - 3
SP - 581
EP - 592
LA - eng
KW - Graph algebras; graph quasi-varieties; graph varieties; quasi-identities; homogeneous subproducts
UR - http://eudml.org/doc/17572
ER -

References

top
  1. K. A. BAKER G. F. McNULTY H. WERNER, Locally finite non-finitely based varieties of algebras, Preprint 1985. (1985) 
  2. S. BURRIS H. P. SANKAPPANAVAR, A course in universal algebra, Graduate Texts Math. 78. N.Y. - Heidelberg - Berlin 1981. (1981) MR0648287
  3. M. Ch. GOLUMBIC, Algorithmic graph theory and perfect graphs, Academic Press, New York 1980. (1980) Zbl0541.05054MR0562306
  4. E. W. KISS, A note on varieties of graph algebras, Lecture Notes Math. 1149 (1985), pp. 163-166. (1985) Zbl0572.08009MR0823014
  5. E. W. KISS R. PÖSCHEL P. PRÖHLE, Subvarieties of varieties generated by graph algebras, (Manuscript 1986, in preparat.) (1986) 
  6. K. KRIEGEL R. PÖSCHEL W. WESSEL, The dimension of graphs with respect to direct powers of a two-element graph, Bull. Austral. Math. Soc. (to appear). MR0909772
  7. G. F. McNULTY C. SHALLON, Inherently nonfinitely based finite algebras, Lecture Notes Math. 1004 (1983), 206-231. (1983) MR0716184
  8. R. H. MÖHRING F. J. RADERMACHER, Substitution decomposition for discrete structures and connections with combinatorial optimization, Ann. Discrete Math. 19 (1984), 257-356. (1984) MR0780025
  9. Sh. OATES-WILLIAMS, Murskii's algebra does not satisfy MIN, Bull. Austral. Math. Soc. 22 (1980), 199-203. (1980) Zbl0487.08008MR0598691
  10. Sh. OATES-WILLIAMS, Graphs and universal algebras, Lecture Notes Math. 884 (1981), 351-354. (1981) Zbl0468.05068MR0641259
  11. R. PÖSCHEL, Graph algebras and graph varieties, (Manuscript 1985, submitted to Algebra Univ.). (1985) 
  12. R. PÖSCHEL, Shallon-algebras and varieties for graphs and relational systems, In: J. Machner, G. Schaar (eds.), Algebra und Graphentheorie. Bergakademie Freiberg, Sekt. Math., 1986, pp. 53-56. (Proc. Conf. "Algebra und Anwendungen", Siebenlehn). (1986) 
  13. R. PÖSCHEL W. WESSEL, Classes of graphs which can be defined by equations in their graph algebras, Prel. report, 1984. (1984) 
  14. M. POUZET I. G. ROSENBERG, Embeddings and absolute retracts of relational systems, Preprint CRM-1265, Montreal, Febr. 1985. (1985) MR1768213
  15. A. PULTR, On product dimensions in general and that of graphs in particular, Vorträge zu Grundlagen der Informatik, Weiterbildungszentrum Math. Kybernetik u. Rechentechnik, Sektion Math., TU Dresden, Heft 27, (1977). 66-79. (1977) 
  16. A. PULTR O. VINÁREK, Productive classes and subdirect irreducibility, in particular for graphs, Discrete Math. 20 (1977), 159-176. (1977) MR0485593
  17. C. R. SHALLON, Nonfinitely based finite algebras derived from lattices, Ph. D. Dissertation, Univ. of California, Los Angeles. 1979. (1979) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.