Constrained lagrangian submanifolds over singular constraining varieties and discriminant varieties
Stanislaw Janeczko (1987)
Annales de l'I.H.P. Physique théorique
Similarity:
Stanislaw Janeczko (1987)
Annales de l'I.H.P. Physique théorique
Similarity:
S. Janeczko (2000)
Annales Polonici Mathematici
Similarity:
Let (P,ω) be a symplectic manifold. We find an integrability condition for an implicit differential system D' which is formed by a Lagrangian submanifold in the canonical symplectic tangent bundle (TP,ὡ).
Małgorzata Mikosz (1999)
Banach Center Publications
Similarity:
Monika Havelková (2011)
Communications in Mathematics
Similarity:
We study dynamics of singular Lagrangian systems described by implicit differential equations from a geometric point of view using the exterior differential systems approach. We analyze a concrete Lagrangian previously studied by other authors by methods of Dirac’s constraint theory, and find its complete dynamics.
Wojciech Domitrz, Stanisław Janeczko (1997)
Banach Center Publications
Similarity:
Olga Krupková (2010)
Communications in Mathematics
Similarity:
In this survey article, nonholonomic mechanics is presented as a part of geometric mechanics. We follow a geometric setting where the constraint manifold is a submanifold in a jet bundle, and a nonholonomic system is modelled as an exterior differential system on the constraint manifold. The approach admits to apply coordinate independent methods, and is not limited to Lagrangian systems under linear constraints. The new methods apply to general (possibly nonconservative) mechanical...