Geometric mechanics on nonholonomic submanifolds
Communications in Mathematics (2010)
- Volume: 18, Issue: 1, page 51-77
- ISSN: 1804-1388
Access Full Article
topAbstract
topHow to cite
topKrupková, Olga. "Geometric mechanics on nonholonomic submanifolds." Communications in Mathematics 18.1 (2010): 51-77. <http://eudml.org/doc/196870>.
@article{Krupková2010,
abstract = {In this survey article, nonholonomic mechanics is presented as a part of geometric mechanics. We follow a geometric setting where the constraint manifold is a submanifold in a jet bundle, and a nonholonomic system is modelled as an exterior differential system on the constraint manifold. The approach admits to apply coordinate independent methods, and is not limited to Lagrangian systems under linear constraints. The new methods apply to general (possibly nonconservative) mechanical systems subject to general (possibly nonlinear) nonholonomic constraints, and admit a straightforward generalization to higher order mechanics and field theory. In particular, we are concerned with the following topics: the geometry of nonholonomic constraints, equations of motion of nonholonomic systems on constraint manifolds and their geometric meaning, a nonholonomic variational principle, symmetries, a nonholonomic Noether theorem, regularity, and nonholonomic Hamilton equations.},
author = {Krupková, Olga},
journal = {Communications in Mathematics},
keywords = {jet bundle; canonical distribution; non-holonomic variational principle; Hamilton equation},
language = {eng},
number = {1},
pages = {51-77},
publisher = {University of Ostrava},
title = {Geometric mechanics on nonholonomic submanifolds},
url = {http://eudml.org/doc/196870},
volume = {18},
year = {2010},
}
TY - JOUR
AU - Krupková, Olga
TI - Geometric mechanics on nonholonomic submanifolds
JO - Communications in Mathematics
PY - 2010
PB - University of Ostrava
VL - 18
IS - 1
SP - 51
EP - 77
AB - In this survey article, nonholonomic mechanics is presented as a part of geometric mechanics. We follow a geometric setting where the constraint manifold is a submanifold in a jet bundle, and a nonholonomic system is modelled as an exterior differential system on the constraint manifold. The approach admits to apply coordinate independent methods, and is not limited to Lagrangian systems under linear constraints. The new methods apply to general (possibly nonconservative) mechanical systems subject to general (possibly nonlinear) nonholonomic constraints, and admit a straightforward generalization to higher order mechanics and field theory. In particular, we are concerned with the following topics: the geometry of nonholonomic constraints, equations of motion of nonholonomic systems on constraint manifolds and their geometric meaning, a nonholonomic variational principle, symmetries, a nonholonomic Noether theorem, regularity, and nonholonomic Hamilton equations.
LA - eng
KW - jet bundle; canonical distribution; non-holonomic variational principle; Hamilton equation
UR - http://eudml.org/doc/196870
ER -
References
top- Balseiro, P., Marrero, J.C., de Diego, D. Martín, Padrón, E., 10.1088/0951-7715/23/8/006, Nonlinearity 23 2010 1887–1918 (2010) MR2669632DOI10.1088/0951-7715/23/8/006
- Bloch, A.M., Nonholonomic Mechanics and Control, Springer Verlag, New York 2003 (2003) Zbl1045.70001MR1978379
- Bloch, A.M., Fernandez, O.E., Mestdag, T., 10.1016/S0034-4877(09)90001-5, Rep. Math. Phys. 63 2009 225–249 (2009) Zbl1207.37045MR2519467DOI10.1016/S0034-4877(09)90001-5
- Bloch, A.M., Krishnaprasad, P.S., Marsden, J.E., Murray, R.M., 10.1007/BF02199365, Arch. Ration. Mech. Anal. 136 1996 21–99 (1996) MR1423003DOI10.1007/BF02199365
- Cantrijn, F., de León, M., Marrero, J.C., de Diego, D. Martín, 10.1063/1.532686, J. Math. Phys. 40 1999 795–820 (1999) MR1674283DOI10.1063/1.532686
- Cardin, F., Favretti, M., 10.1016/0393-0440(95)00016-X, J. Geom. Phys. 18 1996 295–325 (1996) Zbl0864.70007MR1383219DOI10.1016/0393-0440(95)00016-X
- Cariñena, J.F., Rañada, M.F., 10.1088/0305-4470/26/6/016, J. Phys. A: Math. Gen. 26 1993 1335–1351 (1993) MR1212006DOI10.1088/0305-4470/26/6/016
- Cendra, H., Ferraro, S., Grillo, S., 10.1016/j.geomphys.2008.05.002, J. Geom. Phys. 58 2008 1271–1290 (2008) Zbl1147.70008MR2453664DOI10.1016/j.geomphys.2008.05.002
- Chetaev, N.G., On the Gauss principle, Izv. Kazan. Fiz.-Mat. Obsc. 6 1932–33 323–326 (in Russian)
- Cortés, J., 10.1007/b84020, Lecture Notes in Mathematics, Vol. 1793, Springer Verlag, New York 2002 (2002) Zbl1009.70001MR1942617DOI10.1007/b84020
- Cortés, J., de León, M., Marrero, J.C., Martínez, E., 10.3934/dcds.2009.24.213, Discrete Contin. Dyn. Syst. A 24 2009 213–271 (2009) Zbl1161.70336MR2486576DOI10.3934/dcds.2009.24.213
- Cortés, J., de León, M., de Diego, D. Martín, Martínez, S., 10.1137/S036301290036817X, SIAM J. Control Optim. 41 2003 1389–1412 (2003) MR1971955DOI10.1137/S036301290036817X
- de León, M., de Diego, D.M., 10.1063/1.531571, J. Math. Phys. 37 1996 3389–3414 (1996) MR1401231DOI10.1063/1.531571
- de León, M., Marrero, J.C., de Diego, D.M., 10.1088/0305-4470/30/4/018, J. Phys. A: Math. Gen. 30 1997 1167–1190 (1997) MR1449273DOI10.1088/0305-4470/30/4/018
- Giachetta, G., 10.1063/1.529693, J. Math. Phys. 33 1992 1652–1665 (1992) Zbl0758.70010MR1158984DOI10.1063/1.529693
- Goldschmidt, H., Sternberg, S., 10.5802/aif.451, Ann. Inst. Fourier 23 1973 203–267 (1973) Zbl0243.49011MR0341531DOI10.5802/aif.451
- Grabowska, K., Grabowski, J., 10.1088/1751-8113/41/17/175204, J. Phys. A: Math. Theor. 41 2008 No. 175204 (2008) Zbl1137.70011MR2451669DOI10.1088/1751-8113/41/17/175204
- Helmholtz, H., Ueber die physikalische Bedeutung des Prinzips der kleinsten Wirkung, J. für die reine u. angewandte Math. 100 1887 137–166 (1887)
- Janová, J., Musilová, J., 10.1016/j.ijnonlinmec.2008.09.002, Int. J. Non-Linear Mechanics 44 2009 98–105 (2009) Zbl1203.70036DOI10.1016/j.ijnonlinmec.2008.09.002
- Koon, W.S., Marsden, J.E., 10.1016/S0034-4877(97)85617-0, Reports on Math. Phys. 40 1997 21–62 (1997) Zbl0929.70009MR1492413DOI10.1016/S0034-4877(97)85617-0
- Krupka, D., Some geometric aspects of variational problems in fibered manifolds, Folia Fac. Sci. Nat. UJEP Brunensis 14 1973 1–65 Electronic transcription: arXiv:math-ph/0110005 (1973)
- Krupka, D., 10.1016/0022-247X(75)90190-0, J. Math. Anal. Appl. 49 1975 469–476 (1975) Zbl0312.58003MR0362398DOI10.1016/0022-247X(75)90190-0
- Krupka, D., Global variational theory in fibred spaces, , D. Krupka, D. Saunders (eds.)Handbook of Global Analysis Elsevier 2008 773–836 (2008) Zbl1236.58026MR2389646
- Krupka, D., Krupková, O., Prince, G., Sarlet, W., 10.1016/j.difgeo.2007.06.003, Diff. Geom. Appl. 25 2007 518–542 (2007) MR2351428DOI10.1016/j.difgeo.2007.06.003
- Krupka, D., Musilová, J., Hamilton extremals in higher order mechanics, Arch. Math. (Brno) 20 1984 21–30 (1984) MR0785043
- Krupková, O., Lepagean 2-forms in higher order Hamiltonian mechanics, I. Regularity, Arch. Math. (Brno) 22 1986 97–120 (1986) MR0868124
- Krupková, O., Lepagean 2-forms in higher order Hamiltonian mechanics, II. Inverse Problem, Arch. Math. (Brno) 23 1987 155–170 (1987) MR0930318
- Krupková, O., The Geometry of Ordinary Variational Equations, Lecture Notes in Mathematics, Vol. 1678. Springer Verlag, Berlin 1997 (1997) MR1484970
- Krupková, O., 10.1063/1.532196, J. Math. Phys. 38 1997 5098–5126 (1997) MR1471916DOI10.1063/1.532196
- Krupková, O., On the geometry of non-holonomic mechanical systems, , O. Kowalski, I. Kolář, D. Krupka, J. Slovák (eds.)Differential Geometry and Applications Proc. Conf. Brno 1998. Masaryk Univ., Brno 1999 533–546 (1999) MR1708942
- Krupková, O., Higher-order mechanical systems with constraints, J. Math. Phys. 41 2000 5304–5324 (2000) MR1770957
- Krupková, O., Differential systems in higher-order mechanics, , D. Krupka (ed.)Proceedings of the Seminar on Differential Geometry Mathematical Publications, Vol. 2. Silesian Univ., Opava 2000 87–130 (2000) MR1855571
- Krupková, O., 10.1016/S0034-4877(02)80025-8, Reports on Math. Phys. 49 2002 269–278 (2002) Zbl1018.37041MR1915806DOI10.1016/S0034-4877(02)80025-8
- Krupková, O., 10.1016/j.jde.2005.03.003, J. Differential Equations 220 2006 354–395 (2006) Zbl1085.35046DOI10.1016/j.jde.2005.03.003
- Krupková, O., The nonholonomic variational principle, J. Phys. A: Math. Theor. 42 2009 No. 185201 (2009) Zbl1198.70008MR2591195
- Krupková, O., Noether Theorem, 90 years on, Geometry and Physics, Proc. XVII International Fall Workshop on Geometry and Physics, Castro Urdiales, Spain, 2008 , AIP Conf. Proceedings, American Institute of Physics, New York 2009 159–170 (2009)
- Krupková, O., Variational Equations on Manifolds, , A.R. Baswell (ed.)Advances in Mathematics Research Vol. 9. Nova Science Publishers, New York 2009 201–274 (2009) MR2599277
- Krupková, O., Musilová, J., 10.1088/0305-4470/34/18/313, J. Phys. A: Math. Gen. 34 2001 3859–3875 (2001) MR1840850DOI10.1088/0305-4470/34/18/313
- Krupková, O., Musilová, J., 10.1016/S0034-4877(05)80028-X, Reports on Math. Phys. 55 2005 211–220 (2005) DOI10.1016/S0034-4877(05)80028-X
- Krupková, O., Prince, G.E., Second Order Ordinary Differential Equations in Jet Bundles and the Inverse Problem of the Calculus of Variations, , D. Krupka, D. Saunders (eds.)Handbook of Global Analysis Elsevier 2008 841–908 (2008) Zbl1236.58027MR2389647
- Krupková, O., Volný, P., 10.1088/0305-4470/38/40/015, J. Phys. A: Math. Gen. 38 2005 No. 8715 (2005) Zbl1075.70021MR2185849DOI10.1088/0305-4470/38/40/015
- Krupková, O., Volný, P., Differential equations with constraits in jet bundles: Lagrangian and Hamiltonian systems, Lobachevskii J. Math. 23 2006 95–150 (2006)
- Massa, E., Pagani, E., A new look at classical mechanics of constrained systems, Ann. Inst. Henri Poincaré 66 1997 1–36 (1997) Zbl0878.70009MR1434114
- Mestdag, T., Langerock, B., 10.1088/0305-4470/38/5/011, J. Phys. A: Math. Gen. 38 2005 1097–1111 (2005) MR2120934DOI10.1088/0305-4470/38/5/011
- Noether, E., Invariante Variationsprobleme, Nachr. kgl. Ges. Wiss. Göttingen, Math. Phys. Kl. 1918 235–257 (1918)
- Sarlet, W., A direct geometrical construction of the dynamics of non-holonomic Lagrangian systems, Extracta Mathematicae 11 1996 202–212 (1996) MR1424757
- Sarlet, W., Cantrijn, F., Saunders, D.J., 10.1088/0305-4470/28/11/022, J. Phys. A: Math. Gen. 28 1995 3253–3268 (1995) Zbl0858.70013MR1344117DOI10.1088/0305-4470/28/11/022
- Saunders, D.J., The Geometry of Jet Bundles, London Math. Soc. Lecture Notes Series, Vol. 142. Cambridge Univ. Press, Cambridge 1989 (1989) Zbl0665.58002MR0989588
- Saunders, D.J., Sarlet, W., Cantrijn, F., 10.1088/0305-4470/29/14/042, J. Phys. A.: Math. Gen. 29 1996 4265–4274 (1996) Zbl0900.70196MR1406933DOI10.1088/0305-4470/29/14/042
- Swaczyna, M., Several examples of nonholonomic mechanical systems, Communications in Mathematics, to appear
- Volný, P., Krupková, O., Hamilton equations for non-holonomic mechanical systems, , O. Kowalski, D. Krupka, J. Slovák (eds.)Differential Geometry and Its Applications Proc. Conf., Opava, 2001. Mathematical Publications, Vol. 3. Silesian Univ., Opava, Czech Republic 2001 369–380 (2001) MR1978791
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.