Displaying similar documents to “Lectures on cylindric set algebras”

On a problem of Steve Kalikow

Saharon Shelah (2000)

Fundamenta Mathematicae

Similarity:

The Kalikow problem for a pair (λ,κ) of cardinal numbers,λ > κ (in particular κ = 2) is whether we can map the family of ω-sequences from λ to the family of ω-sequences from κ in a very continuous manner. Namely, we demand that for η,ν ∈ ω we have: η, ν are almost equal if and only if their images are. We show consistency of the negative answer, e.g., for ω but we prove it for smaller cardinals. We indicate a close connection with the free subset property and its variants. ...

Cellularity of free products of Boolean algebras (or topologies)

Saharon Shelah (2000)

Fundamenta Mathematicae

Similarity:

The aim this paper is to present an answer to Problem 1 of Monk [10], [11]. We do this by proving in particular that if μ is a strong limit singular cardinal, θ = ( 2 c f ( μ ) ) + and 2 μ = μ + then there are Boolean algebras 𝔹 1 , 𝔹 2 such that c ( 𝔹 1 ) = μ , c ( 𝔹 2 ) < θ b u t c ( 𝔹 1 * 𝔹 2 ) = μ + . Further we improve this result, deal with the method and the necessity of the assumptions. In particular we prove that if 𝔹 is a ccc Boolean algebra and μ ω λ = c f ( λ ) 2 μ then 𝔹 satisfies the λ-Knaster condition (using the “revised GCH theorem”).

Non-trivial derivations on commutative regular algebras.

A. F. Ber, Vladimir I. Chilin, Fyodor A. Sukochev (2006)

Extracta Mathematicae

Similarity:

Necessary and sufficient conditions are given for a (complete) commutative algebra that is regular in the sense of von Neumann to have a non-zero derivation. In particular, it is shown that there exist non-zero derivations on the algebra L(M) of all measurable operators affiliated with a commutative von Neumann algebra M, whose Boolean algebra of projections is not atomic. Such derivations are not continuous with respect to measure convergence. In the classical setting of the algebra...