Displaying similar documents to “Lyapunov numbers for a countable system of ordinary differential equations”

On Lyapunov stability in hypoplasticity

Kovtunenko, Victor A., Krejčí, Pavel, Bauer, Erich, Siváková, Lenka, Zubkova, Anna V.

Similarity:

We investigate the Lyapunov stability implying asymptotic behavior of a nonlinear ODE system describing stress paths for a particular hypoplastic constitutive model of the Kolymbas type under proportional, arbitrarily large monotonic coaxial deformations. The attractive stress path is found analytically, and the asymptotic convergence to the attractor depending on the direction of proportional strain paths and material parameters of the model is proved rigorously with the help of a Lyapunov...

A constructive method for solving stabilization problems

Vadim Azhmyakov (2000)

Discussiones Mathematicae, Differential Inclusions, Control and Optimization

Similarity:

The problem of asymptotic stabilization for a class of differential inclusions is considered. The problem of choosing the Lyapunov functions from the parametric class of polynomials for differential inclusions is reduced to that of searching saddle points of a suitable function. A numerical algorithm is used for this purpose. All the results thus obtained can be extended to cover the discrete systems described by difference inclusions.

Asymptotic Stability of Zakharov-Kuznetsov solitons

Didier Pilod (2014-2015)

Séminaire Laurent Schwartz — EDP et applications

Similarity:

In this report, we review the proof of the asymptotic stability of the Zakharov-Kuznetsov solitons in dimension two. Those results were recently obtained in a joint work with Raphaël Côte, Claudio Muñoz and Gideon Simpson.