Existence of invariant measures for piecewise continuous transformations
Giulio Pianigiani (1981)
Annales Polonici Mathematici
Similarity:
Giulio Pianigiani (1981)
Annales Polonici Mathematici
Similarity:
M. Jabłoński (1976)
Annales Polonici Mathematici
Similarity:
P. Kasprowski (1983)
Annales Polonici Mathematici
Similarity:
Franz Hofbauer (1988)
Monatshefte für Mathematik
Similarity:
Andrzej Pelc
Similarity:
CONTENTS0. Introduction...........................................51. Preliminaries.........................................72. Universal invariant measures..............133. Extensions of invariant measures........214. Saturation of ideals on groups............34References.............................................46
Jan Mycielski (1974)
Colloquium Mathematicae
Similarity:
K. Krzyżewski (1979)
Colloquium Mathematicae
Similarity:
Nikolay Tzvetkov, Nicola Visciglia (2013)
Annales scientifiques de l'École Normale Supérieure
Similarity:
Inspired by the work of Zhidkov on the KdV equation, we perform a construction of weighted Gaussian measures associated to the higher order conservation laws of the Benjamin-Ono equation. The resulting measures are supported by Sobolev spaces of increasing regularity. We also prove a property on the support of these measures leading to the conjecture that they are indeed invariant by the flow of the Benjamin-Ono equation.
Artur Bartoszewicz (1978)
Colloquium Mathematicae
Similarity:
Beloslav Riečan (1974)
Časopis pro pěstování matematiky
Similarity:
Louis Sucheston (1964/65)
Mathematische Zeitschrift
Similarity:
H. Gacki, A. Lasota, J. Myjak (2009)
Bulletin of the Polish Academy of Sciences. Mathematics
Similarity:
We show upper estimates of the concentration and thin dimensions of measures invariant with respect to families of transformations. These estimates are proved under the assumption that the transformations have a squeezing property which is more general than the Lipschitz condition. These results are in the spirit of a paper by A. Lasota and J. Traple [Chaos Solitons Fractals 28 (2006)] and generalize the classical Moran formula.
Jan K. Pachl (1979)
Colloquium Mathematicae
Similarity:
K. P. S. Bhaskara Rao, B. V. Rao (1975)
Colloquium Mathematicae
Similarity:
K. Musiał (1973)
Colloquium Mathematicae
Similarity: