Existence of invariant measures for piecewise continuous transformations
Giulio Pianigiani (1981)
Annales Polonici Mathematici
Similarity:
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
The search session has expired. Please query the service again.
Giulio Pianigiani (1981)
Annales Polonici Mathematici
Similarity:
M. Jabłoński (1976)
Annales Polonici Mathematici
Similarity:
P. Kasprowski (1983)
Annales Polonici Mathematici
Similarity:
Franz Hofbauer (1988)
Monatshefte für Mathematik
Similarity:
Andrzej Pelc
Similarity:
CONTENTS0. Introduction...........................................51. Preliminaries.........................................72. Universal invariant measures..............133. Extensions of invariant measures........214. Saturation of ideals on groups............34References.............................................46
Jan Mycielski (1974)
Colloquium Mathematicae
Similarity:
K. Krzyżewski (1979)
Colloquium Mathematicae
Similarity:
Nikolay Tzvetkov, Nicola Visciglia (2013)
Annales scientifiques de l'École Normale Supérieure
Similarity:
Inspired by the work of Zhidkov on the KdV equation, we perform a construction of weighted Gaussian measures associated to the higher order conservation laws of the Benjamin-Ono equation. The resulting measures are supported by Sobolev spaces of increasing regularity. We also prove a property on the support of these measures leading to the conjecture that they are indeed invariant by the flow of the Benjamin-Ono equation.
Artur Bartoszewicz (1978)
Colloquium Mathematicae
Similarity:
Beloslav Riečan (1974)
Časopis pro pěstování matematiky
Similarity:
Louis Sucheston (1964/65)
Mathematische Zeitschrift
Similarity:
H. Gacki, A. Lasota, J. Myjak (2009)
Bulletin of the Polish Academy of Sciences. Mathematics
Similarity:
We show upper estimates of the concentration and thin dimensions of measures invariant with respect to families of transformations. These estimates are proved under the assumption that the transformations have a squeezing property which is more general than the Lipschitz condition. These results are in the spirit of a paper by A. Lasota and J. Traple [Chaos Solitons Fractals 28 (2006)] and generalize the classical Moran formula.
Jan K. Pachl (1979)
Colloquium Mathematicae
Similarity:
K. P. S. Bhaskara Rao, B. V. Rao (1975)
Colloquium Mathematicae
Similarity:
K. Musiał (1973)
Colloquium Mathematicae
Similarity: