Gaussian measures associated to the higher order conservation laws of the Benjamin-Ono equation
Nikolay Tzvetkov; Nicola Visciglia
Annales scientifiques de l'École Normale Supérieure (2013)
- Volume: 46, Issue: 2, page 249-299
- ISSN: 0012-9593
Access Full Article
topAbstract
topHow to cite
topReferences
top- [1] L. Abdelouhab, J. L. Bona, M. Felland & J.-C. Saut, Nonlocal models for nonlinear, dispersive waves, Phys. D40 (1989), 360–392. Zbl0699.35227MR1044731
- [2] J. Bourgain, Periodic nonlinear Schrödinger equation and invariant measures, Comm. Math. Phys.166 (1994), 1–26. Zbl0822.35126MR1309539
- [3] J. Bourgain, Invariant measures for the D-defocusing nonlinear Schrödinger equation, Comm. Math. Phys.176 (1996), 421–445. Zbl0852.35131MR1374420
- [4] D. C. Brydges & G. Slade, Statistical mechanics of the -dimensional focusing nonlinear Schrödinger equation, Comm. Math. Phys.182 (1996), 485–504. Zbl0867.35090MR1447302
- [5] N. Burq & F. Planchon, On well-posedness for the Benjamin-Ono equation, Math. Ann.340 (2008), 497–542. Zbl1148.35074MR2357995
- [6] N. Burq, L. Thomann & N. Tzvetkov, Long time dynamics for the one dimensional non linear Schrödinger equation, to appear in Ann. Inst. Fourier. Zbl1317.35226
- [7] A. D. Ionescu & C. E. Kenig, Global well-posedness of the Benjamin-Ono equation in low-regularity spaces, J. Amer. Math. Soc.20 (2007), 753–798. Zbl1123.35055MR2291918
- [8] J. L. Lebowitz, H. A. Rose & E. R. Speer, Statistical mechanics of the nonlinear Schrödinger equation, J. Statist. Phys.50 (1988), 657–687. Zbl0925.35142MR939505
- [9] M. Ledoux & M. Talagrand, Probability in Banach spaces, Ergebn. Math. Grenzg. 23, Springer, 1991. Zbl0748.60004MR1102015
- [10] Y. Matsuno, Bilinear transformation method, Mathematics in Science and Engineering 174, Academic Press Inc., 1984. Zbl0552.35001MR759718
- [11] L. Molinet, Global well-posedness in for the periodic Benjamin-Ono equation, Amer. J. Math.130 (2008), 635–683. Zbl1157.35001MR2418924
- [12] A. R. Nahmod, T. Oh, L. Rey-Bellet & G. Staffilani, Invariant weighted Wiener measures and almost sure global well-posedness for the periodic derivative NLS, J. Eur. Math. Soc. (JEMS) 14 (2012), 1275–1330. Zbl1251.35151MR2928851
- [13] T. Tao, Global well-posedness of the Benjamin-Ono equation in , J. Hyperbolic Differ. Equ.1 (2004), 27–49. Zbl1055.35104MR2052470
- [14] N. Tzvetkov, Construction of a Gibbs measure associated to the periodic Benjamin-Ono equation, Probab. Theory Related Fields146 (2010), 481–514. Zbl1188.35183MR2574736
- [15] P. E. Zhidkov, Korteweg-de Vries and nonlinear Schrödinger equations: qualitative theory, Lecture Notes in Math. 1756, Springer, 2001. Zbl0987.35001MR1831831