Prime PI-rights in which finitely generated right ideals are principal.
Joachim Gräter (1992)
Forum mathematicum
Similarity:
Joachim Gräter (1992)
Forum mathematicum
Similarity:
Birkenmeier, Gary F., Groenewald, Nico J., Heatherly, Henry E. (1997)
Beiträge zur Algebra und Geometrie
Similarity:
Zandt, Michael (1995)
Beiträge zur Algebra und Geometrie
Similarity:
Harbans Lal (1971)
Mathematica Scandinavica
Similarity:
M. Satyanarayana (1967)
Mathematica Scandinavica
Similarity:
Bhat, V.K. (2008)
Beiträge zur Algebra und Geometrie
Similarity:
Jeppe Christoffer Dyre (1982)
Mathematica Scandinavica
Similarity:
David Jonah (1970)
Mathematische Zeitschrift
Similarity:
E. Casas Alvero (1993)
Cours de l'institut Fourier
Similarity:
Craig Huneke, Vijaylaxmi Trivedi (1997)
Manuscripta mathematica
Similarity:
Balcerzak, Marek, Wroński, Stanisław (2015-11-17T11:49:55Z)
Acta Universitatis Lodziensis. Folia Mathematica
Similarity:
Raymond Mortini (1986)
Mathematische Zeitschrift
Similarity:
A. Kwela, P. Zakrzewski (2017)
Commentationes Mathematicae Universitatis Carolinae
Similarity:
This note is devoted to combinatorial properties of ideals on the set of natural numbers. By a result of Mathias, two such properties, selectivity and density, in the case of definable ideals, exclude each other. The purpose of this note is to measure the ``distance'' between them with the help of ultrafilter topologies of Louveau.
Hejduk, Jacek, Kharazishvili, Aleksander (2015-11-18T17:38:32Z)
Acta Universitatis Lodziensis. Folia Mathematica
Similarity:
W. Żelazko (2006)
Studia Mathematica
Similarity:
We prove that a real or complex unital F-algebra has all maximal left ideals closed if and only if the set of all its invertible elements is open. Consequently, such an algebra also automatically has all maximal right ideals closed.