The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Local polynomial functions on lattices and universal algebras”

Stone Lattices

Adam Grabowski (2015)

Formalized Mathematics

Similarity:

The article continues the formalization of the lattice theory (as structures with two binary operations, not in terms of ordering relations). In the paper, the notion of a pseudocomplement in a lattice is formally introduced in Mizar, and based on this we define the notion of the skeleton and the set of dense elements in a pseudocomplemented lattice, giving the meet-decomposition of arbitrary element of a lattice as the infimum of two elements: one belonging to the skeleton, and the...

On M-operators of q-lattices

Radomír Halaš (2002)

Discussiones Mathematicae - General Algebra and Applications

Similarity:

It is well known that every complete lattice can be considered as a complete lattice of closed sets with respect to appropriate closure operator. The theory of q-lattices as a natural generalization of lattices gives rise to a question whether a similar statement is true in the case of q-lattices. In the paper the so-called M-operators are introduced and it is shown that complete q-lattices are q-lattices of closed sets with respect to M-operators.

A characterization of uninorms on bounded lattices via closure and interior operators

Gül Deniz Çayli (2023)

Kybernetika

Similarity:

Uninorms on bounded lattices have been recently a remarkable field of inquiry. In the present study, we introduce two novel construction approaches for uninorms on bounded lattices with a neutral element, where some necessary and sufficient conditions are required. These constructions exploit a t-norm and a closure operator, or a t-conorm and an interior operator on a bounded lattice. Some illustrative examples are also included to help comprehend the newly added classes of uninorms. ...

Meet-distributive lattices have the intersection property

Henri Mühle (2023)

Mathematica Bohemica

Similarity:

This paper is an erratum of H. Mühle: Distributive lattices have the intersection property, Math. Bohem. (2021). Meet-distributive lattices form an intriguing class of lattices, because they are precisely the lattices obtainable from a closure operator with the so-called anti-exchange property. Moreover, meet-distributive lattices are join semidistributive. Therefore, they admit two natural secondary structures: the core label order is an alternative order on the lattice elements and...