A characterization of uninorms on bounded lattices via closure and interior operators

Gül Deniz Çayli

Kybernetika (2023)

  • Volume: 59, Issue: 5, page 768-790
  • ISSN: 0023-5954

Abstract

top
Uninorms on bounded lattices have been recently a remarkable field of inquiry. In the present study, we introduce two novel construction approaches for uninorms on bounded lattices with a neutral element, where some necessary and sufficient conditions are required. These constructions exploit a t-norm and a closure operator, or a t-conorm and an interior operator on a bounded lattice. Some illustrative examples are also included to help comprehend the newly added classes of uninorms.

How to cite

top

Çayli, Gül Deniz. "A characterization of uninorms on bounded lattices via closure and interior operators." Kybernetika 59.5 (2023): 768-790. <http://eudml.org/doc/299172>.

@article{Çayli2023,
abstract = {Uninorms on bounded lattices have been recently a remarkable field of inquiry. In the present study, we introduce two novel construction approaches for uninorms on bounded lattices with a neutral element, where some necessary and sufficient conditions are required. These constructions exploit a t-norm and a closure operator, or a t-conorm and an interior operator on a bounded lattice. Some illustrative examples are also included to help comprehend the newly added classes of uninorms.},
author = {Çayli, Gül Deniz},
journal = {Kybernetika},
keywords = {bounded lattice; closure operator; uninorm; interior operator; T-norm; T-conorm},
language = {eng},
number = {5},
pages = {768-790},
publisher = {Institute of Information Theory and Automation AS CR},
title = {A characterization of uninorms on bounded lattices via closure and interior operators},
url = {http://eudml.org/doc/299172},
volume = {59},
year = {2023},
}

TY - JOUR
AU - Çayli, Gül Deniz
TI - A characterization of uninorms on bounded lattices via closure and interior operators
JO - Kybernetika
PY - 2023
PB - Institute of Information Theory and Automation AS CR
VL - 59
IS - 5
SP - 768
EP - 790
AB - Uninorms on bounded lattices have been recently a remarkable field of inquiry. In the present study, we introduce two novel construction approaches for uninorms on bounded lattices with a neutral element, where some necessary and sufficient conditions are required. These constructions exploit a t-norm and a closure operator, or a t-conorm and an interior operator on a bounded lattice. Some illustrative examples are also included to help comprehend the newly added classes of uninorms.
LA - eng
KW - bounded lattice; closure operator; uninorm; interior operator; T-norm; T-conorm
UR - http://eudml.org/doc/299172
ER -

References

top
  1. Aşıci, E., , Kybernetika 57 (2021), 352-371. MR4273580DOI
  2. Aşıcı, E., Mesiar, R., , Kybernetika 57 (2021), 989-1004. MR4376872DOI
  3. Beliakov, G., Pradera, A., Calvo, T., Aggregation Functions: A Guide for Practitioners., Springer, Berlin 2007. 
  4. Benítez, J. M., Castro, J. L., Requena, I., , IEEE Trans. Neural Netw. 8 (1997), 1156-1163. DOI
  5. Birkhoff, G., Lattice Theory., American Mathematical Society Colloquium Publishers, Providence 1967. Zbl0537.06001MR0227053
  6. Bodjanova, S., Kalina, M., , In: IEEE 12th International Symposium on Intelligent Systems and Informatics, SISY 2014, Subotica 2014. DOI
  7. Bodjanova, S., Kalina, M., , In: IWIFSGN 2017, EUSFLAT 2017, AISC, vol. 641 J. Kacprzyk et al. eds. Springer, Cham, 2018, pp. 224-234. DOI
  8. Bodjanova, S., Kalina, M., , In: AGOP 2019, AISC, vol. 981 R. Halaś et al. eds. Springer, Cham, 2019, pp. 183-194. DOI
  9. Çayli, G. D., 10.1016/j.ins.2019.03.007, Inf. Sci. 488 (2019), 111-139. MR3924420DOI10.1016/j.ins.2019.03.007
  10. Çayli, G. D., , Int. J. Approx. Reason. 115 (2019), 254-264. MR4018632DOI
  11. Çayli, G. D., , Appl. Math. Comput. 366 (2020), 124746. MR4011595DOI
  12. Çayli, G. D., , Fuzzy Sets Syst. 395 (2020), 107-129. MR4109064DOI
  13. Çayli, G. D., , Int. J. Uncertain. Fuzziness Knowl. Based Syst. 28 (2020), 807-835. MR4155937DOI
  14. Çayli, G. D., , Int. J. Gen. Syst. 50 (2021), 139-158. MR4222196DOI
  15. Çayli, G. D., Karaçal, F., Mesiar, R., , Int. J. Gen. Syst. 48 (2019), 235-259. MR3904571DOI
  16. Dan, Y., Hu, B. Q., Qiao, J., , Int. J. Approx. Reason. 110 (2019), 185-209. MR3947797DOI
  17. Dan, Y., Hu, B. Q., , Fuzzy Sets Syst. 386 (2020), 77-94. MR4073387DOI
  18. Baets, B. De, , European J. Oper. Res. 118 (1999), 631-642. Zbl1178.03070DOI
  19. Baets, B. De, Fodor, J., Ruiz-Aguilera, D., Torrens, J., , Int. J. Uncertain. Fuzziness Knowl. Based Syst. 17 (2009), 1-14. Zbl1178.03070MR2514519DOI
  20. Drewniak, J., Drygaś, P., , Int. J. Uncertain. Fuzziness Knowl. Based Syst. 10 (2002), 5-10. MR1962665DOI
  21. Drossos, C. A., , Fuzzy Sets Syst. 104 (1999), 53-59. MR1685809DOI
  22. Drossos, C. A., Navara, M., Generalized t-conorms and closure operators., In: Proc. EUFIT '96, Aachen, 1996, pp. 22-26. 
  23. Drygaś, P., On the structure of continuous uninorms., Kybernetika 43 (2007), 183-196. Zbl1132.03349MR2343394
  24. Drygaś, P., Rak, E., , Fuzzy Sets Syst. 291 (2016), 82-97. MR3463655DOI
  25. Dubois, D., Prade, H., Fundamentals of Fuzzy Sets., Kluwer Academic Publisher, Boston 2000. MR1890229
  26. Dubois, D., Prade, H., , Inf. Sci. 36 (1985), 85-121. Zbl0582.03040MR0813766DOI
  27. Engelking, R., General Topology., Heldermann Verlag, Berlin 1989. Zbl1281.54001MR1039321
  28. Ertuğrul, Ü., Kesicioğlu, M., Karaçal, F., , Kybernetika 55 (2019), 994-1015. MR4077141DOI
  29. Everett, C. J., , Trans. Am. Math. Soc. 55 (1944), 514-525. MR0010556DOI
  30. Fodor, J., Yager, R. R., Rybalov, A., , Int. J. Uncertain. Fuzziness Knowl. Based Syst. 5 (1997), 411-427. Zbl1232.03015MR1471619DOI
  31. González-Hidalgo, M., Massanet, S., Mir, A., Ruiz-Aguilera, D., , IEEE Trans. Fuzzy Syst. 23 (2015), 872-884. DOI
  32. He, P., Wang, X. P., , Int. J. Approx. Reason. 136 (2021), 1-13. MR4270087DOI
  33. Homenda, W., Jastrzebska, A., Pedrycz, W., , Appl. Math. Comput. 290 (2016), 392-411. MR3523438DOI
  34. Hua, X. J., Ji, W., , Fuzzy Sets Syst. 427 (2022), 109-131. MR4343692DOI
  35. Karaçal, F., Ertuğrul, Ü., Kesicioğlu, M., , Kybernetika 55 (2019), 976-993. MR4077140DOI
  36. Karaçal, F., Mesiar, R., , Fuzzy Sets Syst. 261 (2015), 33-43. MR3291484DOI
  37. Klement, E. P., Mesiar, R., Pap, E., Triangular Norms., Kluwer Academic Publishers, Dordrecht 2000. Zbl1087.20041MR1790096
  38. Klement, E. P., Mesiar, R., Pap, E., , Fuzzy Sets Syst. 143 (2004), 5-26. MR2060270DOI
  39. Klement, E. P., Mesiar, R., Pap, E., , Fuzzy Sets Syst. 145 (2004), 411-438. MR2075838DOI
  40. Medina, J., , Fuzzy Sets Syst. 202 (2012), 75-88. MR2934787DOI
  41. Menger, K., 10.1073/pnas.28.12.535, PNAS 8 (1942), 535-537. Zbl0063.03886MR0007576DOI10.1073/pnas.28.12.535
  42. Metcalfe, G., Montagna, F., , J. Symb. Log. 72 (2007), 834-864. MR2354903DOI
  43. Ouyang, Y., Zhang, H. P., , Fuzzy Sets Syst. 395 (2020), 93-106. MR4109063DOI
  44. Sun, X. R., Liu, H. W., , Fuzzy Sets Syst. 427 (2022), 96-108. MR4343691DOI
  45. Saminger, S., , Fuzzy Sets Syts. 157 (2006), 1403-1416. Zbl1099.06004MR2226983DOI
  46. Schweizer, B., Sklar, A., Probabilistic Metric Spaces., Elsevier North-Holland, New York 1983. Zbl0546.60010MR0790314
  47. Schweizer, B., Sklar, A., Associative functions and statistical triangular inequalities., Publ. Math. 8 (1961), 169-186. MR0132939
  48. Takács, M., Uninorm-based models for FLC systems., J. Intell. Fuzzy Syst. 19 (2008), 65-73. 
  49. Yager, R. R., , Fuzzy Sets Syst. 67 (1994), 129-145. MR1302575DOI
  50. Yager, R. R., Rybalov, A., , Fuzzy Sets Syst. 80 (1996), 111-120. Zbl0871.04007MR1389951DOI
  51. Yager, R. R., , Fuzzy Sets Syst. 122 (2001), 167-175. MR1839955DOI
  52. Yager, R. R., Defending against strategic manipulation in uninorm-based multi-agent decision making., Fuzzy Sets Syst. 140 (2003), 331-339. Zbl0998.90046MR1925395
  53. Zhao, B., Wu, T., , Int. J. Approx. Reason. 130 (2021), 22-49. MR4188974DOI

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.