The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

The search session has expired. Please query the service again.

Displaying similar documents to “Adjoining conjugating elements to finite groups”

On the Neumann problem with combined nonlinearities

Jan Chabrowski, Jianfu Yang (2005)

Annales Polonici Mathematici

Similarity:

We establish the existence of multiple solutions of an asymptotically linear Neumann problem. These solutions are obtained via the mountain-pass principle and a local minimization.

On the Neumann problem with L¹ data

J. Chabrowski (2007)

Colloquium Mathematicae

Similarity:

We investigate the solvability of the linear Neumann problem (1.1) with L¹ data. The results are applied to obtain existence theorems for a semilinear Neumann problem.

On a method of determining supports of Thoma's characters of discrete groups

Ernest Płonka (1997)

Annales Polonici Mathematici

Similarity:

We present a new approach to determining supports of extreme, normed by 1, positive definite class functions of discrete groups, i.e. characters in the sense of E. Thoma [8]. Any character of a group produces a unitary representation and thus a von Neumann algebra of linear operators with finite normal trace. We use a theorem of H. Umegaki [9] on the uniqueness of conditional expectation in finite von Neumann algebras. Some applications and examples are given.

Commutants of von Neumann correspondences and duality of Eilenberg-Watts theorems by Rieffel and by Blecher

Michael Skeide (2006)

Banach Center Publications

Similarity:

The category of von Neumann correspondences from 𝓑 to 𝓒 (or von Neumann 𝓑-𝓒-modules) is dual to the category of von Neumann correspondences from 𝓒' to 𝓑' via a functor that generalizes naturally the functor that sends a von Neumann algebra to its commutant and back. We show that under this duality, called commutant, Rieffel's Eilenberg-Watts theorem (on functors between the categories of representations of two von Neumann algebras) switches into Blecher's Eilenberg-Watts theorem...

Triple derivations on von Neumann algebras

Robert Pluta, Bernard Russo (2015)

Studia Mathematica

Similarity:

It is well known that every derivation of a von Neumann algebra into itself is an inner derivation and that every derivation of a von Neumann algebra into its predual is inner. It is less well known that every triple derivation (defined below) of a von Neumann algebra into itself is an inner triple derivation. We examine to what extent all triple derivations of a von Neumann algebra into its predual are inner. This rarely happens but it comes close. We prove a (triple)...