Displaying similar documents to “A remark on hypoelliptic differential and convolution operators”

Convolution operators on spaces of holomorphic functions

Tobias Lorson, Jürgen Müller (2015)

Studia Mathematica

Similarity:

A class of convolution operators on spaces of holomorphic functions related to the Hadamard multiplication theorem for power series and generalizing infinite order Euler differential operators is introduced and investigated. Emphasis is placed on questions concerning injectivity, denseness of range and surjectivity of the operators.

A limit theorem for the q-convolution

Anna Kula (2011)

Banach Center Publications

Similarity:

The q-convolution is a measure-preserving transformation which originates from non-commutative probability, but can also be treated as a one-parameter deformation of the classical convolution. We show that its commutative aspect is further certified by the fact that the q-convolution satisfies all of the conditions of the generalized convolution (in the sense of Urbanik). The last condition of Urbanik's definition, the law of large numbers, is the crucial part to be proved and the non-commutative...

Hypercyclicity of convolution operators on spaces of entire functions

F.J. Bertoloto, G. Botelho, V.V. Fávaro, A.M. Jatobá (2013)

Annales de l’institut Fourier

Similarity:

In this paper we use Nachbin’s holomorphy types to generalize some recent results concerning hypercyclic convolution operators on Fréchet spaces of entire functions of bounded type of infinitely many complex variables

Convolutions related to q-deformed commutativity

Anna Kula (2010)

Banach Center Publications

Similarity:

Two important examples of q-deformed commutativity relations are: aa* - qa*a = 1, studied in particular by M. Bożejko and R. Speicher, and ab = qba, studied by T. H. Koornwinder and S. Majid. The second case includes the q-normality of operators, defined by S. Ôta (aa* = qa*a). These two frameworks give rise to different convolutions. In particular, in the second scheme, G. Carnovale and T. H. Koornwinder studied their q-convolution. In the present paper we consider another convolution...