Hypercyclicity of convolution operators on spaces of entire functions

F.J. Bertoloto[1]; G. Botelho[1]; V.V. Fávaro[1]; A.M. Jatobá[1]

  • [1] Universidade Federal de Uberlândia Faculdade de Matemática 38.400-902 - Uberlândia (Brazil)

Annales de l’institut Fourier (2013)

  • Volume: 63, Issue: 4, page 1263-1283
  • ISSN: 0373-0956

Abstract

top
In this paper we use Nachbin’s holomorphy types to generalize some recent results concerning hypercyclic convolution operators on Fréchet spaces of entire functions of bounded type of infinitely many complex variables

How to cite

top

Bertoloto, F.J., et al. "Hypercyclicity of convolution operators on spaces of entire functions." Annales de l’institut Fourier 63.4 (2013): 1263-1283. <http://eudml.org/doc/275674>.

@article{Bertoloto2013,
abstract = {In this paper we use Nachbin’s holomorphy types to generalize some recent results concerning hypercyclic convolution operators on Fréchet spaces of entire functions of bounded type of infinitely many complex variables},
affiliation = {Universidade Federal de Uberlândia Faculdade de Matemática 38.400-902 - Uberlândia (Brazil); Universidade Federal de Uberlândia Faculdade de Matemática 38.400-902 - Uberlândia (Brazil); Universidade Federal de Uberlândia Faculdade de Matemática 38.400-902 - Uberlândia (Brazil); Universidade Federal de Uberlândia Faculdade de Matemática 38.400-902 - Uberlândia (Brazil)},
author = {Bertoloto, F.J., Botelho, G., Fávaro, V.V., Jatobá, A.M.},
journal = {Annales de l’institut Fourier},
keywords = {Fréchet spaces of entire functions; hypercyclicity; convolution operators},
language = {eng},
number = {4},
pages = {1263-1283},
publisher = {Association des Annales de l’institut Fourier},
title = {Hypercyclicity of convolution operators on spaces of entire functions},
url = {http://eudml.org/doc/275674},
volume = {63},
year = {2013},
}

TY - JOUR
AU - Bertoloto, F.J.
AU - Botelho, G.
AU - Fávaro, V.V.
AU - Jatobá, A.M.
TI - Hypercyclicity of convolution operators on spaces of entire functions
JO - Annales de l’institut Fourier
PY - 2013
PB - Association des Annales de l’institut Fourier
VL - 63
IS - 4
SP - 1263
EP - 1283
AB - In this paper we use Nachbin’s holomorphy types to generalize some recent results concerning hypercyclic convolution operators on Fréchet spaces of entire functions of bounded type of infinitely many complex variables
LA - eng
KW - Fréchet spaces of entire functions; hypercyclicity; convolution operators
UR - http://eudml.org/doc/275674
ER -

References

top
  1. Richard Aron, Juan Bès, Hypercyclic differentiation operators, Function spaces (Edwardsville, IL, 1998) 232 (1999), 39-46, Amer. Math. Soc., Providence, RI Zbl0938.47004MR1678318
  2. Richard Aron, Dinesh Markose, On universal functions, J. Korean Math. Soc. 41 (2004), 65-76 Zbl1069.47006MR2048701
  3. G. D. Birkhoff, Démonstration d’un théorème élémentaire sur les fonctions entières, C. R. Acad. Sci. Paris 189 (1929), 473-475 Zbl55.0192.07
  4. Geraldo Botelho, H.-A. Braunss, H. Junek, Daniel M. Pellegrino, Holomorphy types and ideals of multilinear mappings, Studia Math. 177 (2006), 43-65 Zbl1112.46038MR2283707
  5. Geraldo Botelho, Daniel M. Pellegrino, Two new properties of ideals of polynomials and applications, Indag. Math. (N.S.) 16 (2005), 157-169 Zbl1089.46027MR2319290
  6. Daniel Carando, Verónica Dimant, Santiago Muro, Hypercyclic convolution operators on Fréchet spaces of analytic functions, J. Math. Anal. Appl. 336 (2007), 1324-1340 Zbl1128.47005MR2353017
  7. Daniel Carando, Verónica Dimant, Santiago Muro, Coherent sequences of polynomial ideals on Banach spaces, Math. Nachr. 282 (2009), 1111-1133 Zbl1181.47076MR2547712
  8. Daniel Carando, Verónica Dimant, Santiago Muro, Every Banach ideal of polynomials is compatible with an operator ideal, Monatsh. Math. 165 (2012), 1-14 Zbl1236.47062MR2886120
  9. Seán Dineen, Complex analysis on infinite-dimensional spaces, (1999), Springer-Verlag London Ltd., London Zbl1034.46504MR1705327
  10. Vinícius V. Fávaro, Convolution equations on spaces of quasi-nuclear functions of a given type and order, Bull. Belg. Math. Soc. Simon Stevin 17 (2010), 535-569 Zbl1211.46038MR2731373
  11. Vinícius V. Fávaro, Ariosvaldo M. Jatobá, Holomorphy types and spaces of entire functions of bounded type on Banach spaces, Czechoslovak Math. J. 59(134) (2009), 909-927 Zbl1224.46087MR2563566
  12. José L. Gámez-Merino, Gustavo A. Muñoz-Fernández, Víctor M. Sánchez, Juan B. Seoane-Sepúlveda, Sierpiński-Zygmund functions and other problems on lineability, Proc. Amer. Math. Soc. 138 (2010), 3863-3876 Zbl1207.26006MR2679609
  13. Robert M. Gethner, Joel H. Shapiro, Universal vectors for operators on spaces of holomorphic functions, Proc. Amer. Math. Soc. 100 (1987), 281-288 Zbl0618.30031MR884467
  14. Gilles Godefroy, Joel H. Shapiro, Operators with dense, invariant, cyclic vector manifolds, J. Funct. Anal. 98 (1991), 229-269 Zbl0732.47016MR1111569
  15. Chaitan P. Gupta, Convolution operators and holomorphic mappings on a Banach space, Séminaire d’Analyse Moderne, No. 2, Dept. Math, Université de Sherbrooke, Québec (1969) Zbl0243.47016
  16. Chaitan P. Gupta, On the Malgrange theorem for nuclearly entire functions of bounded type on a Banach space, Nederl. Akad. Wetensch. Proc. Ser. A73 = Indag. Math. 32 (1970), 356-358 Zbl0201.44605MR290104
  17. André Arbex Hallack, Hypercyclicity for translations through Runge’s theorem, Bull. Korean Math. Soc. 44 (2007), 117-123 Zbl1142.47010MR2297702
  18. Carol Kitai, Invariant closed sets for linear operators, (1982), ProQuest LLC, Ann Arbor, MI MR2632793
  19. G. R. MacLane, Sequences of derivatives and normal families, J. Analyse Math. 2 (1952), 72-87 Zbl0049.05603MR53231
  20. Bernard Malgrange, Existence et approximation des solutions des équations aux dérivées partielles et des équations de convolution, Ann. Inst. Fourier, Grenoble 6 (1955–1956), 271-355 Zbl0071.09002MR86990
  21. Mário C. Matos, Mappings between Banach spaces that send mixed summable sequences into absolutely summable sequences, J. Math. Anal. Appl. 297 (2004), 833-851 Zbl1067.47029MR2088696
  22. Mário C. Matos, Absolutely Summing Mappings, Nuclear Mappings and Convolution Equations, IMECC-UNICAMP (2005) 
  23. Jorge Mujica, Complex analysis in Banach spaces, 120 (1986), North-Holland Publishing Co., Amsterdam Zbl0586.46040MR842435
  24. X. Mujica, Aplicações τ ( p ; q ) -somantes e σ ( p ) -nucleares, (2006) 
  25. Leopoldo Nachbin, Topology on spaces of holomorphic mappings, (1969), Springer-Verlag New York Inc., New York Zbl0172.39902MR254579
  26. Henrik Petersson, Hypercyclic convolution operators on entire functions of Hilbert-Schmidt holomorphy type, Ann. Math. Blaise Pascal 8 (2001), 107-114 Zbl1024.47003MR1888820
  27. Henrik Petersson, Hypercyclic subspaces for Fréchet space operators, J. Math. Anal. Appl. 319 (2006), 764-782 Zbl1101.47006MR2227937

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.