Spline prewavelets for non-uniform knots.
Martin D. Buhmann, Ch.A. Micchelli (1992)
Numerische Mathematik
Similarity:
Martin D. Buhmann, Ch.A. Micchelli (1992)
Numerische Mathematik
Similarity:
Jitka Machalová (2002)
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
Similarity:
H.-P. Seidel (1992)
ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique
Similarity:
Jiří Kobza, Pavel Ženčák (1997)
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
Similarity:
Marie-Laurence Mazure (2010)
ESAIM: Mathematical Modelling and Numerical Analysis
Similarity:
Along with the classical requirements on B-splines bases (minimal support, positivity, normalization) we show that it is natural to introduce an additional “end point property". When dealing with multiple knots, this additional property is exactly the appropriate requirement to obtain the poles of nondegenerate splines as intersections of osculating flats at consecutive knots.
R. Zejnullahu (1989)
Matematički Vesnik
Similarity:
Gegham Gevorkyan, Anna Kamont, Karen Keryan, Markus Passenbrunner (2015)
Studia Mathematica
Similarity:
We give a simple geometric characterization of knot sequences for which the corresponding orthonormal spline system of arbitrary order k is an unconditional basis in the atomic Hardy space H¹[0,1].